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Using a data sample of e e~ collisions corresponding to an integrated luminosity of 567 pb~! collected
at a center-of-mass energy of /s = 4.6 GeV with the BESIII detector, we measure the absolute branching
fraction of the inclusive semileptonic A" decay with a double-tag method. We obtain B(A} — Xetv,) =
(3.95 4+ 0.34 4 0.09)%, where the first uncertainty is statistical and the second systematic. Using the
known A7 lifetime and the charge-averaged semileptonic decay width of nonstrange charmed mesons
(D° and D), we obtain the ratio of the inclusive semileptonic decay widths T'(Af — Xe*v,)/

(D - Xetv,) = 1.26 £ 0.12.

DOI: 10.1103/PhysRevLett.121.251801

Since the first observation of the A baryon, the lightest
baryon containing a charm quark, in 1979 [1], its hadronic
decays have been studied extensively. However, informa-
tion about semileptonic decays of the A} baryon is sparse
[2-6]. The measurement of the branching fraction of A —
Al (I = e, u) was first performed by the ARGUS col-
laboration [3] and then by the CLEO collaboration [4]
before 1994. Recently, the BESIII collaboration measured
the absolute branching fraction of A — Aetv, and A} —
Aptv, to be (3.63 +0.43)% [5] and (3.49 4 0.53)% [6],
respectively. A comparison of the exclusive semileptonic
decay branching fraction B(Al — Ae*v,) and the inclusive
semileptonic decay branching fraction B(A; — Xe'v,),
where X refers to any possible particle system, will guide
searches for new semileptonic decay modes. In addition,
using the known A} lifetime, the semileptonic decay width
['(Af = Xe'v,) can be determined. Comparing T'(A} —
XeTv,) with the charge-averaged nonstrange D semileptonic
decay width I'(D—Xe"v,), the ratio [[(Af—Xetv,)/
['(D—Xe*v,)] can be obtained. Current data give
[(Af - Xetv,)/T(D— Xetv,)=1.44+0.54 [7,8]. This
ratio is predicted to be 1.67 [8,9] using an effective-quark
theory calculation and about 1.2 based on a calculation
using the heavy-quark expansion [10]. Therefore, a more

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
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precise measurement of B(Al — Xe'v,) is desirable to
test these theoretical predictions.

Measurement of B(A — Xe*v,) was only performed
by the MARK 1I collaboration in 1982, with a result of
(45+1.7)% [11] using an eTe™ collision data sample
taken at center-of-mass energies from 4.5 to 6.8 GeV. The
determination of B(Al — Xe*tv,) is obtained from signal
events containing Ae™ (pe™) [12], with the observed A(p)
serving as a tag for a charmed baryon event. All these
events are assumed to be from charmed baryon pair
production and subsequent A} semileptonic decay. This
assumption should be questioned as there are ete™ —
c¢ — D p A X continuum events [13]. Besides, they need
to estimate the total number of produced charmed baryon
events, which has large uncertainties and is model depen-
dent [1]. In this Letter, we present the first absolute
measurement of B(Al — Xe'v,) by employing a dou-
ble-tag technique [14]. This technique takes advantage of a
clean AFA; sample just above the threshold and, thus,
obviates the need to make the above assumption or estimate
the total number of produced charmed baryon events.

Our measurement is performed by analyzing an e*e™
collision data sample of 567 pb~! accumulated at /s =
4.6 GeV and recorded with the BESIII detector [15] at the
Beijing Electron-Positron Collider II (BEPCII) [16]. A
detailed description of the BESIII detector can be found
in Ref. [15].

A GEANT4-based [17] Monte Carlo (MC) simulation is
used to estimate the signal efficiency, optimize the selection
criteria, and understand the backgrounds. In the simulation,
the effects of beam-energy spread and initial state radiation
(ISR) are incorporated using KKMC [18], and the final-state
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radiation (FSR) is modeled by pHOTOS [19]. A MC sample
consisting of AFA7 pairs, DET))DET)) pairs, ISR to lower-
mass charmonium (y) states, and continuum processes
incorporates most expected channels. The known decay
modes are modeled with EVTGEN [20,21] using branching
fractions taken from the Particle Data Group (PDG) [7],
and the remaining unknown decays from the charmonium
states with LUNDCHARM [22].

A double-tag technique, first developed by the MARK
I collaboration [23], is employed. First, we fully recon-
struct one /_\; and, then, search for candidates of the signal
decay in the rest of the event that is recoiling against the
tagged A-. Hence, the absolute branching fraction of the
inclusive semileptonic decay can be measured without
knowing the total number of A} A7 pairs produced, thus,
eliminating the related systematic uncertainty. The tag
candidates are reconstructed through the decays A, —
pKY and A7 — pK*tz~, which have large branching
fractions and low backgrounds.

The charged tracks, except those from K, are required to
have a polar angle € with respect to the beam direction
within the multilayer drift chamber (MDC) acceptance
|cos 0] < 0.93, and a distance of closest approach to the
interaction point (IP) within 10 cm along the beam
direction and 1 cm in the plane transverse to the beam
direction. Particle identification (PID) for charged pions,
kaons, and protons is performed by exploiting time-of-
flight (TOF) information and specific ionization energy
loss dE/dx measured by the MDC. The confidence level
(C.L.) under each particle hypothesis (p, K, or x) is
calculated; each charged track is assigned the particle type
with the largest PID C.L. The Kg meson candidates are
reconstructed from two oppositely charged tracks to which
no PID criteria are applied and which are assigned the pion
mass hypothesis. The charged tracks from the K candidate
must satisfy | cos 8| < 0.93. Furthermore, due to the long
lifetime of the Kg meson, there is a less stringent criterion
on the distance of closest approach to the IP in the beam
direction of less than 20 cm, and there is no requirement
on the distance of closest approach in the plane transverse
to the beam direction. The invariant mass of the track pair
is required to be in the range (0.487,0.511) GeV/c>.
Furthermore, the z7z~ pair is constrained to be consistent
with originating from a common decay vertex by means
of a vertex fit. In addition, the decay length, which is the
distance between the IP and the decay vertex, is required to
be larger than twice its resolution.

To suppress combinatorial backgrounds, two kinematic
variables are used to select the tag candidates. These are
the energy difference AE = Ej- — Epyy and the beam-

constrained (BC) mass Mpc = \/ Epem/ ¢t = |Pa-1?/

where Ep,, is the beam energy, E;- and pj;- are the
reconstructed energy and three momentum of the tag

TABLEI. Summary of AE requirements, detection efficiencies,
and tag yields for the different tag modes.

Tag mode AE (MeV) Efficiency (%) Yield
A7 — ng (=21, 19) 56.5+0.3 1214 £+ 36
A7 - pKta~ (=20, 16) 50.1 £0.1 6092 + 82

candidate in the rest frame of the e™ e~ system, respectively.
We require AE to be within (—30, 30) of the peak of the AE
distribution, where o is the resolution of the AE distribu-
tion. Table I gives the AE requirements for each tag mode.
If there are multiple candidates for the same tag mode in a
given event, only the combination with the smallest |AE]| is
retained for further analysis. To determine the tag yields,
we apply a fit to the My distributions, as shown in Fig. 1.
In the fits, the signal shape is modeled by the shape derived
from MC simulation convolved with a Gaussian function
that describes the resolution difference between data and
MC simulation; the combinatorial background is described
by an ARGUS function [24]. We obtain the tag yields by
subtracting the integral of the background function in the
signal region 2.282 < My < 2.300 GeV/c? from the total
number of events in the same region. The tails of the Mpc
distribution above the nominal A] mass are due to the
effects of ISR and FSR. The tag yields and the correspond-
ing detection efficiencies are summarized in Table 1.

In the selected tag sample of A candidates, we search
for charged tracks consistent with being an electron or
positron. To ensure that the charged tracks originate from
the IP, the same distance of closest approach selection
criteria are used as for the non-K9 daughters of the tag
candidates. The track is required to satisfy | cos ] < 0.8 to
ensure that it lies within the acceptance of the barrel of
the electromagnetic calorimeter (EMC), which has better
energy resolution than the EMC end caps. The momentum
of the charged track is required to be greater than
200 MeV/c, as it is difficult to separate positrons from
other particles with low momenta. The selected tracks are
divided into right-sign and wrong-sign samples, where the

R S 0 800}
% wof P KS
s 600
o I
o 10 400f
~ I
£ sop $ $ 200F
c [
ro) [
> it .
m o 0
2.26 2.28 2.3 2.26 2.28 2.3
Mg (GeV/c?)
FIG. 1. Mpc distributions for the different tag modes in data.

The solid blue line is the total fit, the dashed red line is the
background component, and the pink arrows denote the Mpc
signal region.
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charge of the right-sign (wrong-sign) track is required to be
opposite (equal) to that of the tag candidate.

The PID of the selected tracks is implemented with the
information of the dE/dx, TOF and EMC, and the C.L.
under each particle hypothesis (e, 7, K, or p) is calculated.
Positron candidates must satisfy C.L.(e) > 0.001 and
C.L.(e)/[C.L.(e) + C.L.(x) + C.L.(K) + C.L.(p)] > 0.8.
To further suppress the backgrounds from charged pions,
E./p. > 0.8 is required, where E, and p, are the deposited
energy in the EMC and momentum measured by the MDC,
respectively. The remaining selected charged tracks are
assigned the hadron type corresponding to the highest C.L.
that is greater than 0.001. The track is rejected if it does not
have a C.L. greater than 0.001 for any hypothesis.

The identified positron sample contains sizable back-
grounds from misidentified hadrons. To evaluate these
backgrounds, knowledge of their yields and corresponding
misidentification probabilities is required. The real right-
sign and wrong-sign positron yields are determined indi-
vidually by unfolding the matrix [25-27]

Ngbs Pe—»e Pﬂ—>e PK—>€ Pp—>e thrue
N?rbs o Pe—>7r Plr—>7z PK—>7[ Pp—vz N;[rue
N || Pk Peok Prox Ppox || NE© |
N?Jbs Pesp Prop Prop Ppoyp Ngue

where N9 is the observed yield of particle species a (a
denotes e, #, K, or p), P,., is the probability of
identifying particle a as particle b, and N is the true
yield of particle a in the studied sample. The elements of
the PID efficiency matrix P,_,, are obtained by studying
corresponding control samples selected from data. The
charged pion and proton samples are selected from J/y —
pprtr~ events. The charged kaon and positron samples
are selected from J/y — KTK~KTK~ and radiative
Bhabha events, respectively. Because of the different event
topologies, the PID efficiency of positrons from A A7
pairs (one positron and several hadrons) differs from that
from radiative Bhabha scattering events (one electron, one
positron, and one shower). The relative difference (~4.2%)
is corrected by comparing the positron efficiency obtained
from radiative Bhabha MC samples and A} A; pair MC
samples. No correction to the other elements is imple-
mented. The momentum dependence of the PID efficiency
matrix is mostly determined in intervals of 100 MeV/c,
though some intervals are wider due to limited statistics, as
presented in Fig. 2. The muon component is omitted in the
unfolding procedure due to its small yields (almost the
same as the positron yields), the small mis-PID probability
from muon to positron (similar to that from pion to
positron, shown in Fig. 2) and the negligible effect on
the branching fraction measurement. In addition, because
the selected pion sample contains the muon component

1(]2 E o ——0o—0o—0 102 E A A——]
ea=e
:\? 10F .g=1t ;\? 10F .
= ng=K = +++++ |
T 1| a=p Foak -5
Q.m e [Lm . o]
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FIG. 2. PID efficiencies obtained from data.

due to their similar PID behavior in the BESIII detector,
the muon component is implicitly taken into account.

To estimate the contribution from non-A; decays in the
signal region, the unfolded positron yield in the Mpc
sideband region is scaled by a factor of 0.78 that accounts
for the relative amount of background in the sideband and
signal regions determined by the fit to the My distribution.
Since low-background tag modes are used, the contribution
from non-A/ decays is small (3.8%).

The right-sign sample contains primary positrons, which
directly originate from AJ decays, and secondary posi-
trons, not directly arising from A} decays and originating
predominantly from y conversions and z° Dalitz decays.
Detailed MC studies indicate that the secondary positrons
are charge symmetric; hence, their yield can be evaluated
from the wrong-sign positron sample and subtracted from
the total right-sign positron yields. The reliability of the
wrong-sign subtraction has been validated by MC studies.

The tracking efficiency in a given momentum interval,
including geometrical acceptance (80% due to the cut of
|cosf| < 0.8), track reconstruction efficiency, selection
efficiency, and resolution effects, is corrected by unfolding
the following matrix equation:

N = ST, (1)
J

where the tracking efficiency matrix 7'(i|j) describes the
probability of positrons produced in the jth momentum
interval to be reconstructed in the ith momentum interval,
N is the number of primary positrons produced in the jth
momentum interval, and N is the true yield of positron
reconstructed in the ith momentum interval. The tracking
efficiency matrix is obtained by studying the positron MC
sample selected from A semileptonic events. After this
procedure is applied, we obtain the efficiency-corrected
positron momentum spectrum above 200 MeV/c in the
laboratory frame. Table II summarizes the positron yields
obtained after each correction step.

The fraction of positrons below 200 MeV/c¢ is obtained
by fitting the efficiency-corrected positron momentum
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TABLE II. Positron yields in data after each procedure. The
uncertainties are statistical.
Af - Xe'y, Right sign ~ Wrong sign
Observed yields
Tag signal region 228.0£15.1 26.0+5.1
Tag sideband region 11.0£3.3 2014
PID unfolding
Tag signal region 250.1+17.1 283 +6.2
Tag sideband region 12.1 £3.8 1.7£15
Sideband subtraction 240.7+174 27.0+£6.3
Wrong-sign subtraction 213.7£18.5
Correction of tracking efficiency 272.1 £23.5

spectrum with the sum of the spectra of the exclusive decay
channels (Table III), as shown in Fig. 3. In the fit, the
branching fraction of each component is allowed to vary
within the given uncertainty. From the fit, we obtain the
fraction of positrons below 200 MeV/c to be (5.6 +1.5)%,
where the uncertainty is systematic derived from variations
of the fit assumptions. The branching fraction of the
inclusive semileptonic decay of the Al baryon is then
calculated with

NP®(p, > 200 MeV/c)
Ntag[l _f(pe <200 MeV/c)] 7

B(Af = XeTv,) =

)

where NP®(p, > 200 MeV/c) is the yield of positrons
with momentum p, above 200 MeV /¢ after the correction
of the tracking efficiency, N, is the tag yield, and
f(p, <200 MeV/c) is the fraction of positrons below
200 MeV/c. Finally, we obtain B(Al — Xetv,) =
(3.95 £ 0.34)%, where the uncertainty is statistical only.

The systematic uncertainties in this analysis are listed in
Table IV. The tag yield systematic uncertainty is estimated
to be 1.0% by using alternative fits to the My distribution
with different signal shapes, background parameters,
and fitting ranges. The systematic uncertainty related to

TABLE III. A/ semileptonic decays used to extrapolate the
positron momentum spectrum. The branching fraction of the
Al - AeTv, decay is from the BESII measurement [5] and
the uncertainty of the unobserved decay channels is 100% of the
predicted branching fractions. The form factor of the A —
AeTv, decay is taken from QCD sum rules [28] and the other
two, unobserved, semileptonic decay modes are generated by
PYTHIA [29] according to the simple V — A matrix element.

Decay channel B (%) Model

A = AeTy, 3.63 £0.43 [5] FY(q4%)
=2.52/5.09—¢% [28]

AF—>A(1405)ety, 0.3840.38 [30] PYTHIA [29]

Al = nety, 0.27+£0.27 [31] PYTHIA [29]
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FIG. 3. Extrapolation of the positron momentum spectrum in

the laboratory frame obtained from data, shown as points with
error bars. The blue curve shows the extrapolated spectrum.

the tracking efficiency is estimated to be 1.0% by studying
radiative Bhabha scattering events [5]. The systematic
uncertainty in the positron identification efficiency is
estimated by comparing the positron PID efficiencies in
different MC simulated semileptonic A} decays. The
largest relative difference of the positron PID efficiency
is assigned as the systematic uncertainty. The uncertainties
in the other elements of the PID efficiency matrix are
estimated by comparing the matrix elements obtained from
AFA7 pair MC samples with those obtained from MC
samples of radiative Bhabha events, J/y — ppatz~ and
J/w - KTK~K*K~ MC samples. Adding them in quad-
rature, we assign 0.9% as the systematic uncertainty related
to PID. The uncertainty associated with the My sideband
subtraction is estimated to be 0.5% by using an alternative
Mpc sideband region. To estimate the uncertainty in the
extrapolation of the positron momentum spectrum, we
perform an alternative fit in which the branching fraction
of each fit component is unconstrained. In addition, we
use an alternative form-factor model and repeat the fit.
Adding these effects in quadrature, we attribute 1.5% as the
systematic uncertainty related to the extrapolation pro-
cedure. The uncertainty due to limited statistics of data and
MC simulation used to determine the PID efficiency matrix
and tracking efficiency matrix is estimated by repeating
the PID unfolding procedure and correction of tracking

TABLE IV. Sources of systematic uncertainties.

Source Relative uncertainty (%)
Tag yield 1.0
Tracking 1.0
PID 0.9
Sideband subtraction 0.5
Extrapolation 1.5
Data and MC statistics 0.4
Sum 2.3
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TABLE V. Comparison of the branching fraction (in 10~2) and
ratio of the semileptonic decay width between experimental
measurements and theoretical predictions.

(A = XeTv,)/

Result Af - XeTv, T'(D - Xe'tv,)]
BESIII 3.95+0.35 1.26 £0.12
MARK 1II [11] 45+1.7 1.44 +0.54
Effective-quark method [8,9] 1.67
Heavy-quark expansion [10] 1.2

efficiency. In each repetition, we vary each element of the
PID efficiency matrix and tracking efficiency matrix within
the corresponding error simultaneously. The corresponding
systematic uncertainty is derived from 10 000 independent
repetitions and is estimated to be 0.4%. Adding all
uncertainties in quadrature, the total systematic uncertainty
is determined to be 2.3%.

The absolute branching fraction of the inclusive
semileptonic decays of the A baryon is determined to
be B(Al = XeTv,) = (3.95 £ 0.34 + 0.09)%, where the
first and second uncertainties are statistical and systematic,
respectively. Compared with the branching fraction of
Al — Ae'v, measured by the BESIII collaboration [5],
the ratio [B(Af — Ae'v,)/B(Af — Xetv,)] is deter-
mined to be (91.9 £ 12.5 + 5.4)%, where the systematic
uncertainty related to the tracking efficiency of the positron
cancels. Using the known A7 lifetime [7], we obtain the
semileptonic decay width T'(A} — XeTr,) = (1.98 £+
0.18) x 10" s~!. Comparing this with the charge-averaged
semileptonic decay width of nonstrange charmed mesons
(D - Xety,) [7], the ratio [[(Af — XeTv,)/T(D —
XeTv,)] is determined to be 1.26 +0.12. A comparison
of the branching fraction and ratio of the semileptonic
decay width between experimental measurements and
theoretical predictions can be found in Table V.

In summary, by analyzing a data sample corresponding
to an integrated luminosity of 567 pb~! taken at a center-of-
mass energy /s = 4.6 GeV, we report the absolute meas-
urement of the inclusive semileptonic A decay branching
fraction B(A — Xetv,) = (3.95 4+ 0.34 +0.09)%. The
uncertainty is reduced by a factor of 4 compared to the
MARK 1II result [11]. Based on the BESIII measurements
[5], we obtain the ratio of the branching fraction to be
[B(Af =>Aetv,)/B(Af = Xetr,)]=(91.9+12.5+5.4)%.
We also determine the ratio [[(Af — Xe'tv,)/T'(D —
XeTv,)] = 1.26 £ 0.12, which restricts different models
as given in Table V.
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