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Abstract: Let (Ω,
∑

, µ) and (Ω,
∑

, v) be two finite measure spaces and let Lp),θ (µ) and Lq),θ (v) be two generalized
grand Lebesgue spaces [9, 10] , where 1 < p, q < ∞ and θ ≥ 0. In Section 2 we discuss the inclusion properties of

these spaces and investigate under what conditions Lp),θ (µ) ⊆ Lq),θ (v) for two different measures µ and v. Let Ω

be a bounded subset of Rn. We know that the Lebesgue space Lp (µ) admits an approximate identity, bounded in

L1 (µ) , [5, 8] . In Section 3 we investigate the approximate identities of Lp),θ (µ) and show that it does not admit such

an approximate identity. Later we discuss aproximate identities of the space [Lp]p),θ , the closure of C∞
c (Ω) in Lp),θ (µ) ,

where C∞
c (Ω) denotes the space of infinitely differentiable complex-valued functions with compact support on Rn .
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1. Introduction

Let (Ω,
∑

, µ) be a measure space. It is well known that ℓp (Ω) ⊆ ℓq (Ω) whenever 0 < p ≤ q ≤ ∞. Subramanian
[19] investigated all positive measures µ on Ω for which Lp (µ) ⊆ Lq (µ) whenever 0 < p ≤ q ≤ ∞. Romero
[17] improved and completed some results of Subramanian. Miamee [13] considered the more general inclusion
Lp (µ) ⊆ Lq (v) , where µ and v are two measures. Gürkanlı [10] generalized these results to the Lorentz
spaces.

Let Ω be a nonempty set,
∑

a σ -algebra of subsets of Ω and µ a positive finite measure on the
measurable space (Ω,

∑
) . The grand Lebesgue space Lp) (µ) was introduced in [11] . This is a Banach space

defined by the norm

∥f∥p) = sup
0<ε≤p−1

ε

∫
Ω

|f |p−ε
dµ

 1
p−ε

;

where 1 < p < ∞. For 0 < ε ≤ p− 1, Lp (µ) ⊂ Lp) (µ) ⊂ Lp−ε (µ) hold. For some properties and applications
of Lp) (µ) spaces we refer to papers [1− 4, 6, 11] . A generalization of the grand Lebesgue spaces are the spaces
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Lp),θ (µ) , θ ≥ 0, defined by the norm (see [1, 11])

∥f∥p),θ,µ = ∥f∥p),θ = sup
0<ε≤p−1

ε
θ

p−ε

∫
Ω

|f |p−ε
dµ

 1
p−ε

= sup
0<ε≤p−1

ε
θ

p−ε ∥f∥p−ε < ∞;

when θ = 0 the space Lp),0 (µ) reduces to the Lebesgue space Lp (µ) and when θ = 1 the space Lp),1 (µ)

reduces to the grand Lebesgue space Lp) (µ) . More precisely, we have for all 1 < p < ∞ and 0 < ε ≤ p− 1

Lp (µ) ⊂ Lp),θ (µ) ⊂ Lp−ε (µ) .

Different properties and applications of these spaces were discussed in [1, 2, 6, 7, 9] .

If µ and υ are two measures on a σ−algebra
∑

of subsets of Ω , we say that υ is absolutely continuous
with respect to µ if υ(E) = 0 for every E ∈

∑
such that µ(E) = 0 . We denote it by the symbol υ ≪ µ. If µ

and υ are absolutely continuous with respect to each other ( i.e υ ≪ µ and µ ≪ υ ) then we denote it by the
symbol µ ≈ υ.

Let A be a Banach algebra. A Banach space (B, ∥.∥B) is called Banach module over (A, ∥.∥A) if B is a
module over A in the algebraic sense for some multiplication, (a, b) → a.b, and satisfies

∥a.b∥B ≤ ∥a∥A ∥b∥B .

An approximate identity in a Banach algebra A is a net (eα)α∈I ⊂ A such that for every f ∈ A,

lim
α

∥feα − f∥ = 0.

For two Banach modules B1 and B2 over a Banach algebra A, we write MA (B1, B2) or HomA (B1, B2)

for the space of all bounded linear operators T from B1 into B2 satisfying T (ab) = aT (b) for all a ∈ A, b ∈ B1.

These operators are called multipliers (right) or module homomorphism from B1 into B2, [12, 14− 16] . By
Corollary 2.13 in [15] ,

HomA (B1, B
∗
2)

∼= (B1 ⊗A B2)
∗
,

where B∗
2 is the dual of B and ⊗A is the A− module tensor product.

2. Inclusions of generalized grand Lebesgue spaces

In this section we will accept that 1 < p, q < ∞, θ ≥ 0 , and (Ω,
∑

) is a measurable space and all measures are
defined on the σ−algebra

∑
.

Lemma 1 Let (Ω,
∑

, µ) and (Ω,
∑

, υ) be two finite measure spaces. Then the inclusion Lp),θ (µ) ⊆ Lq),θ (υ)

holds in the sense of equivalence classes if and only if µ and v are absolutely continuous with respect to each
other (i.e µ ≈ υ ) and Lp),θ (µ) ⊆ Lq),θ (υ) in the sense of individual functions.

Proof Suppose that Lp),θ (µ) ⊆ Lq),θ (υ) in the sense of equivalence classes. Let f ∈ Lp),θ (µ) be any individual
function. Then f ∈ Lp),θ (µ) in the sense of equivalence classes. By assumption, f ∈ Lq),θ (υ) in the sense of
equivalence classes. This implies f ∈ Lq),θ (υ) in the sense of individual functions. Then Lp),θ (µ) ⊆ Lq),θ (υ)
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in the sense of individual functions. To show υ ≪ µ, take any set E ∈
∑

with µ (E) = 0. Then χE = 0,

µ− a.e, and it is in the equivalence classes of 0 ∈ Lp (µ) , where χE is the characteristic function of E. By the
inclusion Lp (µ) ⊆ Lp),θ (µ) ⊆ Lq),θ (υ) in the sense of equivalence classes , we have 0 ∈ Lq),θ (υ) . Then

sup
0<ε≤q−1

ε
θ

q−ε [v (E)]
1

q−ε = sup
0<ε≤q−1

ε
θ

q−ε ∥χE∥q−ε = ∥χE∥q),θ = 0. (1)

Since Lq),θ (υ) ⊂ Lq−ε (υ) , there exists a constant C > 0 such that

∥χE∥p−ε ≤ C ∥χE∥q),θ .

Then by (1) we have χE = 0, υ − a.e. Thus, v (E) = 0 and so υ ≪ µ. Similarly, one can prove that µ ≪ v.

The proof of the other direction is clear. 2

Theorem 1 Let (Ω,
∑

, µ) and (Ω,
∑

, υ) be two finite measure spaces. Then Lp),θ (µ) ⊆ Lq),θ (υ) holds in the
sense of equivalence classes if and only if µ ≈ υ and there exists a constant C (p, q) > 0 such that

∥f∥q),θ,υ ≤ C (p, q) ∥f∥p),θ,µ (2)

for all f ∈ Lp),θ (µ) .

Proof Assume that the inequality (2) is satisfied and µ ≈ υ . By the inequality (2) the inclusion Lp),θ (µ) ⊆
Lq),θ (υ) holds in the sense of individual functions. Then by Lemma 1, the inclusion Lp),θ (µ) ⊆ Lq),θ (υ) holds
in the sense of equivalence classes.

Conversely, assume that Lp),θ (µ) ⊆ Lq),θ (υ) holds in the sense of equivalence classes. The grand
Lebesgue space Lp),θ (µ) is a Banach space with the sum norm

∥f∥ = ∥f∥p),θ,µ + ∥f∥q),θ,υ .

Indeed, if we get any Cauchy sequence (fn)n∈N in the normed space
(
Lp),θ (µ) , ∥.∥

)
, it is also a Cauchy sequence

in the spaces
(
Lp),θ (µ) , ∥.∥p),θ,µ

)
and

(
Lq),θ (υ) , ∥.∥q),θ,υ

)
. Then (fn)n∈N converges to functions f and g in

spaces Lp),θ (µ) and Lq),θ (v) , respectively . Thus, one can find a subsequence (fni
) of (fn) such that fni

→ f,

µ − a.e and fni
→ g, υ − a.e. Since v is absolutely continuous with respect to µ, then fni

→ f, υ − a.e.

Thus, f = g , υ − a.e. Then (fn) converges to f in the normed space
(
Lp),θ (µ) , ∥.∥

)
. Then the norms ∥.∥

and ∥.∥p),θ,µ are equivalent (see proposition 11, in [18]), and so there exists a constant C (p, q) > 0 such that

∥f∥ ≤ C (p, q) ∥f∥p),θ,µ

for all f ∈ Lp),θ (µ) . This implies

∥f∥q),θ,v ≤ ∥f∥ ≤ C (p, q) ∥f∥p),θ,µ

for all f ∈ Lp),θ (µ) . On the other hand, by Lemma 1, µ and υ are absolutely continuous with respect to each
other. This completes the proof. 2
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Theorem 2 Let (Ω,
∑

, µ) and (Ω,
∑

, υ) be two finite measure spaces. Then the following statements are
equivalent.

1. We have Lp),θ (µ) ⊆ Lp),θ (υ) for p > 1 and for all θ ≥ 0.

2. µ ≈ υ and there exists a constant C (p, θ) > 0 such that

sup
0<ε≤q−1

(υ (E))
1

p−ε ≤ C (p, θ) sup
0<ε≤p−1

(µ (E))
1

p−ε

for all E ∈
∑

.

3. L1 (µ) ⊆ L1 (υ) .

4. Lp),θ (µ) ⊆ Lp),θ (v) for p > 1 and for all θ ≥ 0.

Proof (1) =⇒ (2) : By Theorem 1, µ ≈ υ and there exists C (p, θ) > 0 such that

∥f∥p),θ,υ ≤ C (p, θ) ∥f∥p),θ,µ (3)

for all f ∈ Lp),θ (µ) . If E ∈
∑

, then χE ∈ Lp (µ) . Since Lp (µ) ⊂ Lp),θ (µ) ⊂ Lp),θ (υ) , then χE ∈ Lp),θ (µ) ⊂
Lp),θ (υ) and by (3) we have

∥χE∥p),θ,υ ≤ C (p, θ) ∥χE∥p),θ,µ . (4)

Thus,

sup
0<ε≤p−1

(
εθυ (E)

) 1
p−ε ≤ C (p, θ) sup

0<ε≤p−1

(
εθµ (E)

) 1
p−ε . (5)

(2) =⇒ (3) : Since when θ = 0, the space Lp),θ (µ) reduces to the Lebesgue space Lp (µ) , by (5) ,

(υ (E))
1
p ≤ C (p, 0) (µ (E))

1
p = C (p) (µ (E))

1
p .

This implies
υ (E) ≤ Mµ (E) , (6)

where M = C (p)
p
. Then by Proposition 1 in [13] , we have L1 (µ) ⊆ L1 (v) .

(3) =⇒ (4) : By the inclusion L1 (µ) ⊆ L1 (υ) there exists C1 > 0 such that

∥g∥1,υ ≤ C1 ∥g∥1,µ (7)

for all g ∈ L1 (µ) . Let f ∈ Lp),θ (µ) . Then

∥f∥p),θ,µ = sup
0<ε≤p−1

εθ
∫
Ω

|f |p−ε
dµ

 1
p−ε

< M

for some M > 0. This implies |f |p−ε ∈ L1 (µ) for all ε ∈ (0, p−1]. Since L1 (µ) ⊆ L1 (υ) , then |f |p−ε ∈ L1 (υ) .

By (7) we have ∫
Ω

|f |p−ε
dυ ≤ C1

∫
Ω

|f |p−ε
dµ.
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Thus, we obtain ∫
Ω

|f |p−ε
dυ

 1
p−ε

≤ C

∫
Ω

|f |p−ε
dµ

 1
p−ε

,

where C = C
1

p−ε

1 . If we get the supremum in both sides, we have

sup
0<ε≤p−1

εθ
∫
Ω

|f |p−ε
dυ

 1
p−ε

≤ C sup
0<ε≤p−1

εθ
∫
Ω

|f |p−ε
dµ

 1
p−ε

,

for all θ ≥ 0. Then
∥f∥p),θ,υ ≤ C ∥f∥p),θ,µ < CM < ∞

for all f ∈ Lp),θ (µ) . Finally, we have Lp),θ (µ) ⊆ Lp),θ (υ) for all θ ≥ 0.

(4) =⇒ (1) : This is easy. 2

Theorem 3 Let (Ω,
∑

, µ) be a finite measure space and let p and q be any two positive real numbers. Then

Lp),θ (µ) ⊆ Lq),θ (µ) (8)

whenever 1 < q < p, and for all θ ≥ 0.

Proof Since for every 0 < ε ≤ q − 1, we have q − ε < p − ε, then Lp−ε (µ) ⊂ Lq−ε (µ) . Thus, there exists
C > 0 such that

∥f∥q−ε ≤ C ∥f∥p−ε

for all f ∈ Lp),θ (µ) . Let f ∈ Lp),θ (µ) . We have

∥f∥q),θ,µ = sup
0<ε≤q−1

εθ
∫
Ω

|f |q−ε
dµ

 1
q−ε

= sup
0<ε≤q−1

ε
θ

q−ε ∥f∥q−ε

≤ C sup
0<ε≤q−1

ε
θ

q−ε ∥f∥p−ε = C sup
0<ε≤q−1

ε
θ

q−ε ε
θ

p−ε ε
−θ
p−ε ∥f∥p−ε

= C sup
0<ε≤q−1

ε
θ(p−q)

(p−ε)(q−ε) ε
θ

p−ε ∥f∥p−ε

≤ C sup
0<ε≤q−1

ε
θ(p−q)

(p−ε)(q−ε) sup
0<ε≤q−1

ε
θ

p−ε ∥f∥p−ε

≤ C0 sup
0<ε≤p−1

ε
θ

p−ε ∥f∥p−ε = C0 ∥f∥p),θ,µ ,

where C0 = C sup0<ε≤q−1 ε
θ(p−q)

(p−ε)(q−ε) . Since q < p, C0 is finite and thus f ∈ Lq),θ (µ) . Hence,

Lp),θ (µ) ⊆ Lq),θ (µ)

whenever p < q, and for all θ ≥ 0. 2
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3. Approximate identities and consequences

In this section we will assume that Ω is a bounded subset of Rn and 1 < p, q < ∞, θ ≥ 0.

We know that C∞
c (Ω) is not dense in Lp),θ (µ) , where C∞

c (Ω) denotes the space of infinitely differentiable
complex-valued functions with compact support on Ω [9] . Its closure [Lp]p),θ consists of functions f ∈ Lp),θ (µ)

such that
lim
ε→0

ε
θ

p−ε ∥f∥p−ε = 0.

It is known that the Lebesgue space Lp (µ) admits an approximate identity bounded in L1 (µ) [5, 8] .
The following theorem shows that the this property is not true for generalized grand Lebesgue space.

Theorem 4 The generalized grand Lebesgue space Lp),θ (µ) does not admit an approximate identity, bounded
in L1 (µ) .

Proof Assume that (eα)α∈I is an approximate identity in Lp),θ (µ) bounded in L1 (µ) . Then there exists a

constant M > 0 such that ∥eα∥1 < M for all α ∈ I. Take any function f ∈ Lp),θ (µ) − [Lp]p),θ (for example

the function f (t) = x− 1
p , 1 < p < ∞). Then eα ∗ f → f in Lp),θ (µ) . Since

lim
ε→0

εθ
∫
Ω

|eα ∗ f |p−ε
dµ

 1
p−ε

= lim
ε→0

ε
θ

p−ε ∥eα ∗ f∥p−ε

≤ lim
ε→0

ε
θ

p−ε ∥eα∥1 ∥f∥p−ε

≤ M lim
ε→0

ε
θ

p−ε ∥f∥p−ε = 0,

then eα ∗ f ∈ [Lp]p),θ for each α ∈ I. This implies f ∈ [Lp]p),θ . This contradicts the assumption f ∈

Lp),θ (µ)− [Lp]p),θ . Then Lp),θ (µ) does not admit an approximate identity bounded in L1 (µ) . 2

Theorem 5 a. The generalized grand Lebesgue space Lp),θ (µ) is a Banach convolution module over L1 (µ) .

b. The space [Lp]p),θ is a Banach convolution module over L1 (µ) .

Proof a. We know that Lp),θ (µ) is a Banach space [9] , and Lp (µ) is a Banach L1 (µ)−module. Let f ∈
L1 (µ) and g ∈ Lp),θ (µ) . Then

∥f ∗ g∥p),θ = sup
0<ε≤p−1

εθ
∫
Ω

|f ∗ g|p−ε
dµ

 1
p−ε

(9)

= sup
0<ε≤p−1

ε
θ

p−ε ∥f ∗ g∥p−ε ≤ sup
0<ε≤p−1

ε
θ

p−ε ∥f∥1 ∥g∥p−ε

= ∥f∥1 sup
0<ε≤p−1

ε
θ

p−ε ∥g∥p−ε = ∥f∥1 ∥g∥p),θ .
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It is easy to prove the other conditions for Lp),θ (µ) to be a Banach convolution module over L1 (µ) .

b. It is easy to see that [Lp]p),θ is a vector space. Since [Lp]p),θ ⊂ Lp),θ (µ) is closed in Lp),θ (µ) , and

Lp),θ (µ) is a Banach space, then [Lp]p),θ is a Banach space. The inequality (9) is satisfied for all f ∈ L1 (µ)

and g ∈ [Lp]p),θ . Then [Lp]p),θ is a Banach L1 (µ)− module. 2

Theorem 6 a. The space [Lp]p),θ admits an approximate identity bounded in L1 (µ) .

b. [Lp]p),θ admits an approximate identity bounded in L1 (µ) and with compactly supported Fourier
transforms.

Proof First we shall prove that the closure of Lp (µ) in Lp),θ (µ) is [Lp]p),θ . Let h ∈ Lp (µ) be given. Since
Lp (µ) ⊂ Lp),θ (µ) ⊂ Lp−ε (µ) , then

lim
ε→0

εθ
∫
Ω

|h|p−ε
dµ

 1
p−ε

= lim
ε→0

ε
θ

p−ε ∥h∥p−ε = 0.

Hence, h ∈ [Lp]p),θ . This implies
Lp (µ) ⊂ [Lp]p),θ .

Since
C∞

c (Rn) ⊂ Lp (µ) ⊂ [Lp]p),θ , (10)

we have
[Lp]p),θ = C∞

c (Rn) ⊂ Lp (µ) ⊂ [Lp]p),θ ,

where the closures are in the norm ∥.∥p),θ,µ . Then

Lp (µ) = C∞
c (Rn) = [Lp]p),θ . (11)

It is known by Lemma 1.12 in [8] that Lp (µ) admits an approximate identity (e)α∈I , bounded in L1 (µ) .

Then there exists a constant M > 1, such that ∥eα∥1 ≤ M for all α ∈ I. Also, given any u ∈ Lp (µ) and
δ > 0, there exists α0 ∈ I such that

∥eα ∗ u− u∥p ≤ δ

3
(12)

for all α ≥ α0. We shall show that (e)α∈I is also an approximate identity in [Lp]p),θ . Let f ∈ [Lp]p),θ be given.
Since Lp (µ) is dense in [Lp]p),θ , in the norm ∥.∥p),θ , there exists g ∈ Lp (µ) such that

∥f − g∥p),θ ≤ δ

3M
. (13)

Then

∥eα ∗ f − f∥p),θ = ∥eα ∗ f − f − eα ∗ g + eα ∗ g + g − g∥p),θ (14)

≤ ∥eα ∗ f − eα ∗ g∥p),θ + ∥eα ∗ g − g∥p),θ + ∥g − f∥p),θ ,
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and

∥eα ∗ f − eα ∗ g∥p),θ = ∥eα ∗ (f − g)∥p),θ (15)

≤ ∥eα∥1 ∥(f − g)∥p),θ ≤ M ∥(f − g)∥p),θ ≤ M
δ

3M
=

δ

3
.

Since M > 1, combining (12) (13) , (14) , and (15) , we obtain

∥eα ∗ f − f∥p),θ ≤ δ

3
+

δ

3
+

δ

3M
< δ.

This completes the proof of part (a) . The proof of part (b) is obvious. 2

As an application of the approximate identities we will give the following theorem.

Theorem 7 a) The space of multipliers M
(
L1 (µ) , ([Lp]p),θ )

∗) is isometrically isomorphic to dual space
([Lp]p),θ )

∗
(dual of [Lp]p),θ ).

b) The space of multipliers M
(
L1 (µ) ,

(
Lp),θ (µ)

)∗) is isometrically isomorphic to the dual space(
L1 (µ) ∗ Lp),θ (µ)

)∗
. If f is an element in the space of multipliers M

(
L1 (µ) ,

(
Lp),θ (µ)

)∗)
, then there is

an extension F of f to a continuous linear form on Lp),θ (µ) so that∥∥∥F |
(
Lp),θ (µ)

)∗∥∥∥ =
∥∥∥f |

(
L1 (µ) ∗ Lp),θ (µ)

)∗∥∥∥ ,
where

∥∥∥F |
(
Lp),θ (µ)

)∗∥∥∥ and
∥∥∥f |

(
L1 (µ) ∗ Lp),θ (µ)

)∗∥∥∥ denote the norms on the spaces
(
Lp),θ (µ)

)∗ and(
L1 (µ) ∗ Lp),θ (µ)

)∗
, respectively.

Proof a) We know by Theorem 5 that [Lp]p),θ is a Banach L1 (µ)−module . Also, by Theorem 6, L1 (µ) ∗
[Lp]p),θ is dense in [Lp]p),θ in the ∥.∥p),θ,µ norm. Then by the module factorization theorem [20] , we have

L1 (µ) ∗ [Lp]p),θ = [Lp]p),θ . (16)

Thus, [Lp]p),θ is an essential Banach module over L1 (µ) . Then by Corollary 2.13 in [15] , and by (16) we
obtain

M
(
L1 (µ) , ([Lp]p),θ )

∗)
=

(
L1 (µ) ∗ [Lp]p),θ

)∗
= ([Lp]p),θ )

∗
.

b) Again by Corollary 2.13 in [15] ,

M
(
L1 (µ) ,

(
Lp),θ (µ)

)∗)
=

(
L1 (µ) ∗ Lp),θ (µ)

)∗
.

On the other hand, by Theorem 5, Lp),θ (µ) is a Banach L1 (µ)−convolution module . Thus, L1 (µ)∗Lp),θ (µ) ⊂

Lp),θ (µ) . Then if f ∈ M
(
L1 (µ) ,

(
Lp),θ (µ)

)∗)
, by the Hahn–Banach extension theorem, there is an extension

F of f to a continuous linear form on Lp),θ (µ) so that
∥∥∥F |

(
Lp),θ (µ)

)∗∥∥∥ =
∥∥∥f |

(
L1 (µ) ∗ Lp),θ (µ)

)∗∥∥∥ . This

completes the proof. 2
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