Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: $3195-3203$
© TÜBİTAK
doi:10.3906/mat-1803-89

Inclusions and the approximate identities of the generalized grand Lebesgue spaces

A. Turan GÜRKANLI* ${ }^{*}$
Department of Mathematics and Computer Science, Faculty of Science and Letters, İstanbul Arel University,
Tepekent-Büyükçekmece İstanbul, Turkey

Received: 18.03.2018

- Accepted/Published Online: 20.10.2018
- Final Version: 27.11.2018

Abstract

Let $\left(\Omega, \sum, \mu\right)$ and $\left(\Omega, \sum, v\right)$ be two finite measure spaces and let $L^{p), \theta}(\mu)$ and $L^{q), \theta}(v)$ be two generalized grand Lebesgue spaces $[9,10]$, where $1<p, q<\infty$ and $\theta \geq 0$. In Section 2 we discuss the inclusion properties of these spaces and investigate under what conditions $L^{p), \theta}(\mu) \subseteq L^{q}, \theta(v)$ for two different measures μ and v. Let Ω be a bounded subset of \mathbb{R}^{n}. We know that the Lebesgue space $L^{p}(\mu)$ admits an approximate identity, bounded in $L^{1}(\mu),[5,8]$. In Section 3 we investigate the approximate identities of $L^{p), \theta}(\mu)$ and show that it does not admit such an approximate identity. Later we discuss aproximate identities of the space $\left[L^{p}\right]_{p), \theta}$, the closure of $C_{c}^{\infty}(\Omega)$ in $L^{p), \theta}(\mu)$, where $C_{c}^{\infty}(\Omega)$ denotes the space of infinitely differentiable complex-valued functions with compact support on \mathbb{R}^{n}.

Key words: Lebesgue space, grand Lebesgue space, generalized grand Lebesgue space

1. Introduction

Let $\left(\Omega, \sum, \mu\right)$ be a measure space. It is well known that $\ell^{p}(\Omega) \subseteq \ell^{q}(\Omega)$ whenever $0<p \leq q \leq \infty$. Subramanian [19] investigated all positive measures μ on Ω for which $L^{p}(\mu) \subseteq L^{q}(\mu)$ whenever $0<p \leq q \leq \infty$. Romero [17] improved and completed some results of Subramanian. Miamee [13] considered the more general inclusion $L^{p}(\mu) \subseteq L^{q}(v)$, where μ and v are two measures. Gürkanlı [10] generalized these results to the Lorentz spaces.

Let Ω be a nonempty set, \sum a σ-algebra of subsets of Ω and μ a positive finite measure on the measurable space $\left(\Omega, \sum\right)$. The grand Lebesgue space $L^{p)}(\mu)$ was introduced in [11]. This is a Banach space defined by the norm

$$
\|f\|_{p)}=\sup _{0<\varepsilon \leq p-1}\left(\varepsilon \int_{\Omega}|f|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}
$$

where $1<p<\infty$. For $0<\varepsilon \leq p-1, L^{p}(\mu) \subset L^{p)}(\mu) \subset L^{p-\varepsilon}(\mu)$ hold. For some properties and applications of $L^{p)}(\mu)$ spaces we refer to papers $[1-4,6,11]$. A generalization of the grand Lebesgue spaces are the spaces

[^0]$L^{p, \theta}(\mu), \theta \geq 0$, defined by the norm (see $\left.[1,11]\right)$
$$
\|f\|_{p), \theta, \mu}=\|f\|_{p), \theta}=\sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\left(\int_{\Omega}|f|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}=\sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon}<\infty
$$
when $\theta=0$ the space $L^{p, 0}(\mu)$ reduces to the Lebesgue space $L^{p}(\mu)$ and when $\theta=1$ the space $L^{p, 1}(\mu)$ reduces to the grand Lebesgue space $L^{p)}(\mu)$. More precisely, we have for all $1<p<\infty$ and $0<\varepsilon \leq p-1$
$$
L^{p}(\mu) \subset L^{p), \theta}(\mu) \subset L^{p-\varepsilon}(\mu)
$$

Different properties and applications of these spaces were discussed in [1, 2, 6, 7, 9].
If μ and v are two measures on a σ-algebra \sum of subsets of Ω, we say that v is absolutely continuous with respect to μ if $v(E)=0$ for every $E \in \sum$ such that $\mu(E)=0$. We denote it by the symbol $v \ll \mu$. If μ and v are absolutely continuous with respect to each other (i.e $v \ll \mu$ and $\mu \ll v$) then we denote it by the symbol $\mu \approx v$.

Let A be a Banach algebra. A Banach space $\left(B,\|\cdot\|_{B}\right)$ is called Banach module over $\left(A,\|\cdot\|_{A}\right)$ if B is a module over A in the algebraic sense for some multiplication, $(a, b) \rightarrow a . b$, and satisfies

$$
\|a . b\|_{B} \leq\|a\|_{A}\|b\|_{B}
$$

An approximate identity in a Banach algebra A is a net $\left(e_{\alpha}\right)_{\alpha \in I} \subset A$ such that for every $f \in A$,

$$
\lim _{\alpha}\left\|f e_{\alpha}-f\right\|=0
$$

For two Banach modules B_{1} and B_{2} over a Banach algebra A, we write $M_{A}\left(B_{1}, B_{2}\right)$ or $\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right)$ for the space of all bounded linear operators T from B_{1} into B_{2} satisfying $T(a b)=a T(b)$ for all $a \in A, b \in B_{1}$. These operators are called multipliers (right) or module homomorphism from B_{1} into $B_{2},[12,14-16]$. By Corollary 2.13 in [15],

$$
\operatorname{Hom}_{A}\left(B_{1}, B_{2}^{*}\right) \cong\left(B_{1} \otimes_{A} B_{2}\right)^{*}
$$

where B_{2}^{*} is the dual of B and \otimes_{A} is the A - module tensor product.

2. Inclusions of generalized grand Lebesgue spaces

In this section we will accept that $1<p, q<\infty, \theta \geq 0$, and $\left(\Omega, \sum\right)$ is a measurable space and all measures are defined on the σ-algebra \sum.

Lemma 1 Let $\left(\Omega, \sum, \mu\right)$ and $\left(\Omega, \sum, v\right)$ be two finite measure spaces. Then the inclusion $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ holds in the sense of equivalence classes if and only if μ and v are absolutely continuous with respect to each other (i.e $\mu \approx v$) and $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ in the sense of individual functions.

Proof Suppose that $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ in the sense of equivalence classes. Let $f \in L^{p), \theta}(\mu)$ be any individual function. Then $f \in L^{p), \theta}(\mu)$ in the sense of equivalence classes. By assumption, $f \in L^{q), \theta}(v)$ in the sense of equivalence classes. This implies $f \in L^{q), \theta}(v)$ in the sense of individual functions. Then $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$
in the sense of individual functions. To show $v \ll \mu$, take any set $E \in \sum$ with $\mu(E)=0$. Then $\chi_{E}=0$, μ-a.e, and it is in the equivalence classes of $0 \in L^{p}(\mu)$, where χ_{E} is the characteristic function of E. By the inclusion $L^{p}(\mu) \subseteq L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ in the sense of equivalence classes, we have $0 \in L^{q), \theta}(v)$. Then

$$
\begin{equation*}
\sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}}[v(E)]^{\frac{1}{q-\varepsilon}}=\sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}}\left\|\chi_{E}\right\|_{q-\varepsilon}=\left\|\chi_{E}\right\|_{q), \theta}=0 \tag{1}
\end{equation*}
$$

Since $L^{q), \theta}(v) \subset L^{q-\varepsilon}(v)$, there exists a constant $C>0$ such that

$$
\left\|\chi_{E}\right\|_{p-\varepsilon} \leq C\left\|\chi_{E}\right\|_{q), \theta} .
$$

Then by (1) we have $\chi_{E}=0, v$-a.e. Thus, $v(E)=0$ and so $v \ll \mu$. Similarly, one can prove that $\mu \ll v$. The proof of the other direction is clear.

Theorem 1 Let $\left(\Omega, \sum, \mu\right)$ and $\left(\Omega, \sum, v\right)$ be two finite measure spaces. Then $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ holds in the sense of equivalence classes if and only if $\mu \approx v$ and there exists a constant $C(p, q)>0$ such that

$$
\begin{equation*}
\|f\|_{q), \theta, v} \leq C(p, q)\|f\|_{p), \theta, \mu} \tag{2}
\end{equation*}
$$

for all $f \in L^{p), \theta}(\mu)$.
Proof Assume that the inequality (2) is satisfied and $\mu \approx v$. By the inequality (2) the inclusion $L^{p), \theta}(\mu) \subseteq$ $L^{q), \theta}(v)$ holds in the sense of individual functions. Then by Lemma 1 , the inclusion $L^{p, \theta}(\mu) \subseteq L^{q), \theta}(v)$ holds in the sense of equivalence classes.

Conversely, assume that $L^{p), \theta}(\mu) \subseteq L^{q), \theta}(v)$ holds in the sense of equivalence classes. The grand Lebesgue space $L^{p), \theta}(\mu)$ is a Banach space with the sum norm

$$
\|f\|=\|f\|_{p), \theta, \mu}+\|f\|_{q), \theta, v}
$$

Indeed, if we get any Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in the normed space $\left(L^{p), \theta}(\mu),\|\cdot\|\right)$, it is also a Cauchy sequence in the spaces $\left(L^{p,, \theta}(\mu),\|\cdot\|_{p), \theta, \mu}\right)$ and $\left(L^{q), \theta}(v),\|\cdot\|_{q), \theta, v}\right)$. Then $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to functions f and g in spaces $L^{p), \theta}(\mu)$ and $L^{q), \theta}(v)$, respectively. Thus, one can find a subsequence $\left(f_{n_{i}}\right)$ of $\left(f_{n}\right)$ such that $f_{n_{i}} \rightarrow f$, μ-a.e and $f_{n_{i}} \rightarrow g, v$-a.e. Since v is absolutely continuous with respect to μ, then $f_{n_{i}} \rightarrow f, v-a . e$. Thus, $f=g$, v-a.e. Then $\left(f_{n}\right)$ converges to f in the normed space $\left(L^{p), \theta}(\mu),\|\cdot\|\right)$. Then the norms $\|$. and $\|\cdot\|_{p), \theta, \mu}$ are equivalent (see proposition 11 , in [18]), and so there exists a constant $C(p, q)>0$ such that

$$
\|f\| \leq C(p, q)\|f\|_{p), \theta, \mu}
$$

for all $f \in L^{p), \theta}(\mu)$. This implies

$$
\|f\|_{q), \theta, v} \leq\|f\| \leq C(p, q)\|f\|_{p), \theta, \mu}
$$

for all $f \in L^{p), \theta}(\mu)$. On the other hand, by Lemma $1, \mu$ and v are absolutely continuous with respect to each other. This completes the proof.

Theorem 2 Let $\left(\Omega, \sum, \mu\right)$ and $\left(\Omega, \sum, v\right)$ be two finite measure spaces. Then the following statements are equivalent.

1. We have $L^{p), \theta}(\mu) \subseteq L^{p), \theta}(v)$ for $p>1$ and for all $\theta \geq 0$.
2. $\mu \approx v$ and there exists a constant $C(p, \theta)>0$ such that

$$
\sup _{0<\varepsilon \leq q-1}(v(E))^{\frac{1}{p-\varepsilon}} \leq C(p, \theta) \sup _{0<\varepsilon \leq p-1}(\mu(E))^{\frac{1}{p-\varepsilon}}
$$

for all $E \in \sum$.
3. $\quad L^{1}(\mu) \subseteq L^{1}(v)$.
4. $L^{p), \theta}(\mu) \subseteq L^{p), \theta}(v)$ for $p>1$ and for all $\theta \geq 0$.

Proof $(1) \Longrightarrow(2)$: By Theorem $1, \mu \approx v$ and there exists $C(p, \theta)>0$ such that

$$
\begin{equation*}
\|f\|_{p), \theta, v} \leq C(p, \theta)\|f\|_{p), \theta, \mu} \tag{3}
\end{equation*}
$$

for all $f \in L^{p), \theta}(\mu)$. If $E \in \sum$, then $\chi_{E} \in L^{p}(\mu)$. Since $L^{p}(\mu) \subset L^{p), \theta}(\mu) \subset L^{p), \theta}(v)$, then $\chi_{E} \in L^{p), \theta}(\mu) \subset$ $L^{p), \theta}(v)$ and by (3) we have

$$
\begin{equation*}
\left\|\chi_{E}\right\|_{p), \theta, v} \leq C(p, \theta)\left\|\chi_{E}\right\|_{p), \theta, \mu} \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} v(E)\right)^{\frac{1}{p-\varepsilon}} \leq C(p, \theta) \sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} \mu(E)\right)^{\frac{1}{p-\varepsilon}} . \tag{5}
\end{equation*}
$$

$(2) \Longrightarrow(3)$: Since when $\theta=0$, the space $L^{p), \theta}(\mu)$ reduces to the Lebesgue space $L^{p}(\mu)$, by (5),

$$
(v(E))^{\frac{1}{p}} \leq C(p, 0)(\mu(E))^{\frac{1}{p}}=C(p)(\mu(E))^{\frac{1}{p}}
$$

This implies

$$
\begin{equation*}
v(E) \leq M \mu(E) \tag{6}
\end{equation*}
$$

where $M=C(p)^{p}$. Then by Proposition 1 in [13], we have $L^{1}(\mu) \subseteq L^{1}(v)$.
$(3) \Longrightarrow(4):$ By the inclusion $L^{1}(\mu) \subseteq L^{1}(v)$ there exists $C_{1}>0$ such that

$$
\begin{equation*}
\|g\|_{1, v} \leq C_{1}\|g\|_{1, \mu} \tag{7}
\end{equation*}
$$

for all $g \in L^{1}(\mu)$. Let $f \in L^{p), \theta}(\mu)$. Then

$$
\|f\|_{p), \theta, \mu}=\sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} \int_{\Omega}|f|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}<M
$$

for some $M>0$. This implies $|f|^{p-\varepsilon} \in L^{1}(\mu)$ for all $\varepsilon \in(0, p-1]$. Since $L^{1}(\mu) \subseteq L^{1}(v)$, then $|f|^{p-\varepsilon} \in L^{1}(v)$. By (7) we have

$$
\int_{\Omega}|f|^{p-\varepsilon} d v \leq C_{1} \int_{\Omega}|f|^{p-\varepsilon} d \mu
$$

Thus, we obtain

$$
\left(\int_{\Omega}|f|^{p-\varepsilon} d v\right)^{\frac{1}{p-\varepsilon}} \leq C\left(\int_{\Omega}|f|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}
$$

where $C=C_{1}^{\frac{1}{p-\varepsilon}}$. If we get the supremum in both sides, we have

$$
\sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} \int_{\Omega}|f|^{p-\varepsilon} d v\right)^{\frac{1}{p-\varepsilon}} \leq C \sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} \int_{\Omega}|f|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}
$$

for all $\theta \geq 0$. Then

$$
\|f\|_{p), \theta, v} \leq C\|f\|_{p), \theta, \mu}<C M<\infty
$$

for all $f \in L^{p), \theta}(\mu)$. Finally, we have $L^{p), \theta}(\mu) \subseteq L^{p), \theta}(v)$ for all $\theta \geq 0$.
$(4) \Longrightarrow(1):$ This is easy.

Theorem 3 Let $\left(\Omega, \sum, \mu\right)$ be a finite measure space and let p and q be any two positive real numbers. Then

$$
\begin{equation*}
L^{p), \theta}(\mu) \subseteq L^{q), \theta}(\mu) \tag{8}
\end{equation*}
$$

whenever $1<q<p$, and for all $\theta \geq 0$.
Proof Since for every $0<\varepsilon \leq q-1$, we have $q-\varepsilon<p-\varepsilon$, then $L^{p-\varepsilon}(\mu) \subset L^{q-\varepsilon}(\mu)$. Thus, there exists $C>0$ such that

$$
\|f\|_{q-\varepsilon} \leq C\|f\|_{p-\varepsilon}
$$

for all $f \in L^{p), \theta}(\mu)$. Let $f \in L^{p), \theta}(\mu)$. We have

$$
\begin{aligned}
\|f\|_{q), \theta, \mu} & =\sup _{0<\varepsilon \leq q-1}\left(\varepsilon^{\theta} \int_{\Omega}|f|^{q-\varepsilon} d \mu\right)^{\frac{1}{q-\varepsilon}}=\sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}}\|f\|_{q-\varepsilon} \\
& \leq C \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}}\|f\|_{p-\varepsilon}=C \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}} \varepsilon^{\frac{\theta}{p-\varepsilon}} \varepsilon^{\frac{-\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon} \\
& =C \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon} \\
& \leq C \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}} \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon} \\
& \leq C_{0} \sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon}=C_{0}\|f\|_{p), \theta, \mu}
\end{aligned}
$$

where $C_{0}=C \sup _{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}}$. Since $q<p, C_{0}$ is finite and thus $f \in L^{q), \theta}(\mu)$. Hence,

$$
L^{p), \theta}(\mu) \subseteq L^{q), \theta}(\mu)
$$

whenever $p<q$, and for all $\theta \geq 0$.

3. Approximate identities and consequences

In this section we will assume that Ω is a bounded subset of \mathbb{R}^{n} and $1<p, q<\infty, \theta \geq 0$.
We know that $C_{c}^{\infty}(\Omega)$ is not dense in $L^{p), \theta}(\mu)$, where $C_{c}^{\infty}(\Omega)$ denotes the space of infinitely differentiable complex-valued functions with compact support on $\Omega[9]$. Its closure $\left[L^{p}\right]_{p), \theta}$ consists of functions $f \in L^{p), \theta}(\mu)$ such that

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon}=0
$$

It is known that the Lebesgue space $L^{p}(\mu)$ admits an approximate identity bounded in $L^{1}(\mu)[5,8]$. The following theorem shows that the this property is not true for generalized grand Lebesgue space.

Theorem 4 The generalized grand Lebesgue space $L^{p), \theta}(\mu)$ does not admit an approximate identity, bounded in $L^{1}(\mu)$.

Proof Assume that $\left(e_{\alpha}\right)_{\alpha \in I}$ is an approximate identity in $L^{p), \theta}(\mu)$ bounded in $L^{1}(\mu)$. Then there exists a constant $M>0$ such that $\left\|e_{\alpha}\right\|_{1}<M$ for all $\alpha \in I$. Take any function $f \in L^{p), \theta}(\mu)-\left[L^{p}\right]_{p), \theta}$ (for example the function $\left.f(t)=x^{-\frac{1}{p}}, 1<p<\infty\right)$. Then $e_{\alpha} * f \rightarrow f$ in $L^{p), \theta}(\mu)$. Since

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{\theta} \int_{\Omega}\left|e_{\alpha} * f\right|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}} & =\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\theta}{p-\varepsilon}}\left\|e_{\alpha} * f\right\|_{p-\varepsilon} \\
& \leq \lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\theta}{p-\varepsilon}}\left\|e_{\alpha}\right\|_{1}\|f\|_{p-\varepsilon} \\
& \leq M \lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{p-\varepsilon}=0
\end{aligned}
$$

then $e_{\alpha} * f \in\left[L^{p}\right]_{p), \theta}$ for each $\alpha \in I$. This implies $f \in\left[L^{p}\right]_{p), \theta}$. This contradicts the assumption $f \in$ $L^{p), \theta}(\mu)-\left[L^{p}\right]_{p), \theta}$. Then $L^{p), \theta}(\mu)$ does not admit an approximate identity bounded in $L^{1}(\mu)$.

Theorem 5 a. The generalized grand Lebesgue space $L^{p), \theta}(\mu)$ is a Banach convolution module over $L^{1}(\mu)$.
b. The space $\left[L^{p}\right]_{p), \theta}$ is a Banach convolution module over $L^{1}(\mu)$.

Proof a. We know that $L^{p), \theta}(\mu)$ is a Banach space [9], and $L^{p}(\mu)$ is a Banach $L^{1}(\mu)-$ module. Let $f \in$ $L^{1}(\mu)$ and $g \in L^{p), \theta}(\mu)$. Then

$$
\begin{align*}
\|f * g\|_{p), \theta} & =\sup _{0<\varepsilon \leq p-1}\left(\varepsilon^{\theta} \int_{\Omega}|f * g|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}} \tag{9}\\
& =\sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f * g\|_{p-\varepsilon} \leq \sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|f\|_{1}\|g\|_{p-\varepsilon} \\
& =\|f\|_{1} \sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|g\|_{p-\varepsilon}=\|f\|_{1}\|g\|_{p), \theta} .
\end{align*}
$$

It is easy to prove the other conditions for $L^{p), \theta}(\mu)$ to be a Banach convolution module over $L^{1}(\mu)$.
b. It is easy to see that $\left[L^{p}\right]_{p), \theta}$ is a vector space. Since $\left[L^{p}\right]_{p, \theta} \subset L^{p), \theta}(\mu)$ is closed in $L^{p), \theta}(\mu)$, and $L^{p), \theta}(\mu)$ is a Banach space, then $\left[L^{p}\right]_{p), \theta}$ is a Banach space. The inequality (9) is satisfied for all $f \in L^{1}(\mu)$ and $g \in\left[L^{p}\right]_{p), \theta}$. Then $\left[L^{p}\right]_{p), \theta}$ is a Banach $L^{1}(\mu)-$ module.

Theorem 6 a. The space $\left[L^{p}\right]_{p, \theta}$ admits an approximate identity bounded in $L^{1}(\mu)$.
b. $\left[L^{p}\right]_{p), \theta}$ admits an approximate identity bounded in $L^{1}(\mu)$ and with compactly supported Fourier transforms.

Proof First we shall prove that the closure of $L^{p}(\mu)$ in $L^{p), \theta}(\mu)$ is $\left[L^{p}\right]_{p), \theta}$. Let $h \in L^{p}(\mu)$ be given. Since $L^{p}(\mu) \subset L^{p), \theta}(\mu) \subset L^{p-\varepsilon}(\mu)$, then

$$
\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{\theta} \int_{\Omega}|h|^{p-\varepsilon} d \mu\right)^{\frac{1}{p-\varepsilon}}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\theta}{p-\varepsilon}}\|h\|_{p-\varepsilon}=0
$$

Hence, $h \in\left[L^{p}\right]_{p), \theta}$. This implies

$$
L^{p}(\mu) \subset\left[L^{p}\right]_{p), \theta} .
$$

Since

$$
\begin{equation*}
C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \subset L^{p}(\mu) \subset\left[L^{p}\right]_{p), \theta} \tag{10}
\end{equation*}
$$

we have

$$
\left[L^{p}\right]_{p), \theta}=\overline{C_{c}^{\infty}\left(\mathbb{R}^{n}\right)} \subset \overline{L^{p}(\mu)} \subset\left[L^{p}\right]_{p), \theta}
$$

where the closures are in the norm $\|\cdot\|_{p), \theta, \mu}$. Then

$$
\begin{equation*}
\overline{L^{p}(\mu)}=\overline{C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}=\left[L^{p}\right]_{p), \theta} \tag{11}
\end{equation*}
$$

It is known by Lemma 1.12 in [8] that $L^{p}(\mu)$ admits an approximate identity $(e)_{\alpha \in I}$, bounded in $L^{1}(\mu)$. Then there exists a constant $M>1$, such that $\left\|e_{\alpha}\right\|_{1} \leq M$ for all $\alpha \in I$. Also, given any $u \in L^{p}(\mu)$ and $\delta>0$, there exists $\alpha_{0} \in I$ such that

$$
\begin{equation*}
\left\|e_{\alpha} * u-u\right\|_{p} \leq \frac{\delta}{3} \tag{12}
\end{equation*}
$$

for all $\alpha \geq \alpha_{0}$. We shall show that $(e)_{\alpha \in I}$ is also an approximate identity in $\left[L^{p}\right]_{p), \theta}$. Let $f \in\left[L^{p}\right]_{p), \theta}$ be given. Since $L^{p}(\mu)$ is dense in $\left[L^{p}\right]_{p), \theta}$, in the norm $\|\cdot\|_{p), \theta}$, there exists $g \in L^{p}(\mu)$ such that

$$
\begin{equation*}
\|f-g\|_{p), \theta} \leq \frac{\delta}{3 M} \tag{13}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\|e_{\alpha} * f-f\right\|_{p), \theta} & =\left\|e_{\alpha} * f-f-e_{\alpha} * g+e_{\alpha} * g+g-g\right\|_{p), \theta} \tag{14}\\
& \leq\left\|e_{\alpha} * f-e_{\alpha} * g\right\|_{p), \theta}+\left\|e_{\alpha} * g-g\right\|_{p), \theta}+\|g-f\|_{p), \theta}
\end{align*}
$$

and

$$
\begin{align*}
\left\|e_{\alpha} * f-e_{\alpha} * g\right\|_{p), \theta} & =\left\|e_{\alpha} *(f-g)\right\|_{p), \theta} \tag{15}\\
& \leq\left\|e_{\alpha}\right\|_{1}\|(f-g)\|_{p), \theta} \leq M\|(f-g)\|_{p), \theta} \leq M \frac{\delta}{3 M}=\frac{\delta}{3} .
\end{align*}
$$

Since $M>1$, combining (12) (13), (14), and (15), we obtain

$$
\left\|e_{\alpha} * f-f\right\|_{p), \theta} \leq \frac{\delta}{3}+\frac{\delta}{3}+\frac{\delta}{3 M}<\delta .
$$

This completes the proof of part (a). The proof of part (b) is obvious.
As an application of the approximate identities we will give the following theorem.
Theorem 7 a) The space of multipliers $M\left(L^{1}(\mu),\left(\left[L^{p}\right]_{p, \theta}\right)^{*}\right)$ is isometrically isomorphic to dual space $\left(\left[L^{p}\right]_{p, \theta}\right)^{*}$ (dual of $\left.\left[L^{p}\right]_{p, \theta)}\right)$.
b) The space of multipliers $M\left(L^{1}(\mu),\left(L^{p, \theta}(\mu)\right)^{*}\right)$ is isometrically isomorphic to the dual space $\left(L^{1}(\mu) * L^{p), \theta}(\mu)\right)^{*}$. If f is an element in the space of multipliers $M\left(L^{1}(\mu),\left(L^{p), \theta}(\mu)\right)^{*}\right)$, then there is an extension F of f to a continuous linear form on $L^{p, \theta}(\mu)$ so that

$$
\left\|F\left|\left(L^{p, \theta}(\mu)\right)^{*}\|=\| f\right|\left(L^{1}(\mu) * L^{p, \theta}(\mu)\right)^{*}\right\|,
$$

where $\left\|F \mid\left(L^{p, \theta}(\mu)\right)^{*}\right\|$ and $\left\|f \mid\left(L^{1}(\mu) * L^{p), \theta}(\mu)\right)^{*}\right\|$ denote the norms on the spaces $\left(L^{p), \theta}(\mu)\right)^{*}$ and $\left(L^{1}(\mu) * L^{p, \theta}(\mu)\right)^{*}$, respectively.

Proof a) We know by Theorem 5 that $\left[L^{p}\right]_{p, \theta}$ is a Banach $L^{1}(\mu)$-module. Also, by Theorem 6, $L^{1}(\mu) *$ $\left[L^{p}\right]_{p, \theta}$ is dense in $\left[L^{p}\right]_{p), \theta}$ in the $\|\cdot\|_{p), \theta, \mu}$ norm. Then by the module factorization theorem [20], we have

$$
\begin{equation*}
L^{1}(\mu) *\left[L^{p}\right]_{p), \theta}=\left[L^{p}\right]_{p, \theta} . \tag{16}
\end{equation*}
$$

Thus, $\left[L^{p}\right]_{p), \theta}$ is an essential Banach module over $L^{1}(\mu)$. Then by Corollary 2.13 in [15], and by (16) we obtain

$$
M\left(L^{1}(\mu),\left(\left[L^{p}\right]_{p, \theta}\right)^{*}\right)=\left(L^{1}(\mu) *\left[L^{p}\right]_{p, \theta}\right)^{*}=\left(\left[L^{p}\right]_{p, \theta}\right)^{*} .
$$

b) Again by Corollary 2.13 in [15],

$$
M\left(L^{1}(\mu),\left(L^{p, \theta}(\mu)\right)^{*}\right)=\left(L^{1}(\mu) * L^{p), \theta}(\mu)\right)^{*} .
$$

On the other hand, by Theorem 5, $L^{p, \theta}(\mu)$ is a Banach $L^{1}(\mu)$ - convolution module. Thus, $L^{1}(\mu) * L^{p, \theta}(\mu) \subset$ $L^{p, \theta}(\mu)$. Then if $f \in M\left(L^{1}(\mu),\left(L^{p), \theta}(\mu)\right)^{*}\right)$, by the Hahn-Banach extension theorem, there is an extension F of f to a continuous linear form on $L^{p, \theta}(\mu)$ so that $\left\|F\left|\left(L^{p, \theta}(\mu)\right)^{*}\|=\| f\right|\left(L^{1}(\mu) * L^{p, \theta}(\mu)\right)^{*}\right\|$. This completes the proof.

References

[1] Capone C, Formica MR, Giova R. Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal 2013; 85 : $125-131$.
[2] Castillo RE, Raferio H. Inequalities with conjugate exponents in grand Lebesgue spaces. Hacettepe Journal of Mathematics and Statistics 2015; 44 : 33-39.
[3] Castillo RE, Raferio H. An Introductory Course in Lebesgue Spaces. Zurich, Switzerland: Springer International Publishing, 2016.
[4] Danelia N, Kokilashvili V. On the approximation of periodic functions within the frame of grand Lebesgue spaces. Bulletin of the Georgian National Academy of Sciences 2012; 6: 11-16.
[5] Doran RS, Wichmann J. Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics, 768. Berlin, Germany: Springer-Verlag, 1979.
[6] Fiorenza A, Karadzhov GE. Grand and small Lebesgue spaces and their analogs. Journal for Analysis and its Applications 2004; 23: 657-681.
[7] Fiorenza A. Duality and reflexity in grand Lebesgue spaces. Collect Math 2000; 51 : $131-148$.
[8] Fischer RH, Gürkanlı AT, Liu TS. On a family of weighted spaces. Math Slovaca 1966; $4671-82$.
[9] Greco L, Iwaniec T, Sbordone C. Inverting the p-harmonic operator. Manuscripta Math 1997; 92: $259-272$.
[10] Gürkanlı AT. On the inclusion of some Lorentz spaces. J Math Kyoto Univ 2004; 44 : $441-450$.
[11] Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Arc Rational Mech Anal 1992; 119 : $129-143$.
[12] Larsen L. Introduction to the Theory of Multipliers. Berlin, Germany: Springer Verlag, 1971.
[13] Miamee AG. The inclusion $L^{p}(\mu) \subseteq L^{q}(v)$. Am Math Mon 1991; 98 : $342-345$.
[14] Öztop S, Gürkanlı AT. Multipliers and tensor products of weighted L^{p} - spaces. Acta Math Sci 2001; 21B: 41-49.
[15] Rieffel MA. Induced Banach representation of Banach algebras and locally compact groups. J Funct Anal 1967; 1: 443-491.
[16] Rieffel MA. Multipliers and tensor product of $L^{p}-$ spaces of locally compact groups. Studia Math 1969; 33: 71-82.
[17] Romero JL. When is $L^{p}(\mu)$ contained in $L^{q}(\mu)$? Am Math Mon 1983; 90: $203-206$.
[18] Royden HL. Real Analysis. New York, NY, USA: Macmillan Publishing, 1968.
[19] Subramanian B. On the inclusion $L^{p}(\mu) \subseteq L^{q}(\mu)$. Am Math Mon 1978; 85 : $479-481$.
[20] Wang HC. Homogeneous Banach Algebras. New York, NY, USA: Marcel Dekker Inc., 1977.

[^0]: *Correspondence: turangurkanli@arel.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 46E30; Secondary 46E35; 46B70

