

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Measurement of Singly Cabibbo Suppressed Decays $\Lambda_{c}^{+}\rightarrow p\pi^{+}\pi^{-}$ and $\Lambda_{c}^{+}\rightarrow pK^{+}K^{-}$ M. Ablikim *et al.* (BESIII Collaboration)

Phys. Rev. Lett. **117**, 232002 — Published 2 December 2016 DOI: 10.1103/PhysRevLett.117.232002

¹ Measurement of Singly Cabibbo-Suppressed Decays $\Lambda_c^+ \to p\pi^+\pi^-$ and $\Lambda_c^+ \to pK^+K^-$

M. Ablikim¹, M. N. Achasov^{9,e}, S. Ahmed¹⁴, X. C. Ai¹, O. Albayrak⁵, M. Albrecht⁴, D. J. Ambrose⁴⁴, 2 A. Amoroso^{49A,49C}, F. F. An¹, Q. An^{46,a}, J. Z. Bai¹, O. Bakina²³, R. Baldini Ferroli^{20A}, Y. Ban³¹, D. W. Bennett¹⁹, 3 J. V. Bennett⁵, N. Berger²², M. Bertani^{20A}, D. Bettoni^{21A}, J. M. Bian⁴³, F. Bianchi^{49A,49C}, E. Boger^{23,c}, I. Boyko²³, 4 R. A. Briere⁵, H. Cai⁵¹, X. Cai^{1,a}, O. Cakir^{40A}, A. Calcaterra^{20A}, G. F. Cao¹, S. A. Cetin^{40B}, J. Chai^{49C}, 5 J. F. Chang^{1,a}, G. Chelkov^{23,c,d}, G. Chen¹, H. S. Chen¹, J. C. Chen¹, M. L. Chen^{1,a}, S. Chen⁴¹, S. J. Chen²⁹ 6 X. Chen^{1,a}, X. R. Chen²⁶, Y. B. Chen^{1,a}, H. P. Cheng¹⁷, X. K. Chu³¹, G. Cibinetto^{21A}, H. L. Dai^{1,a}, J. P. Dai³⁴, 7 A. Dbeyssi¹⁴, D. Dedovich²³, Z. Y. Deng¹, A. Denig²², I. Denysenko²³, M. Destefanis^{49A,49C}, F. De Mori^{49A,49C}, 8 Y. Ding²⁷, C. Dong³⁰, J. Dong^{1,a}, L. Y. Dong¹, M. Y. Dong^{1,a}, Z. L. Dou²⁹, S. X. Du⁵³, P. F. Duan¹, J. Z. Fan³⁹, 9 J. Fang^{1,a}, S. S. Fang¹, X. Fang^{46,a}, Y. Fang¹, R. Farinelli^{21A,21B}, L. Fava^{49B,49C}, S. Fegan²², F. Feldbauer²², 10 G. Felici^{20A}, C. Q. Feng^{46,a}, E. Fioravanti^{21A}, M. Fritsch^{14,22}, C. D. Fu¹, Q. Gao¹, X. L. Gao^{46,a}, Y. Gao³⁹, 11 Z. Gao^{46,a}, I. Garzia^{21A}, K. Goetzen¹⁰, L. Gong³⁰, W. X. Gong^{1,a}, W. Gradl²², M. Greco^{49A,49C}, M. H. Gu^{1,a} 12 Y. T. Gu¹², Y. H. Guan¹, A. Q. Guo¹, L. B. Guo²⁸, R. P. Guo¹, Y. Guo¹, Y. P. Guo²², Z. Haddadi²⁵, A. Hafner²², 13 S. Han⁵¹, X. Q. Hao¹⁵, F. A. Harris⁴², K. L. He¹, F. H. Heinsius⁴, T. Held⁴, Y. K. Heng^{1,a}, T. Holtmann⁴, Z. L. Hou¹, C. Hu²⁸, H. M. Hu¹, J. F. Hu^{49A,49C}, T. Hu^{1,a}, Y. Hu¹, G. S. Huang^{46,a}, J. S. Huang¹⁵, X. T. Huang³³, 14 15 X. Z. Huang²⁹, Y. Huang²⁹, Z. L. Huang²⁷, T. Hussain⁴⁸, W. Ikegami Andersson⁵⁰, Q. Ji¹, Q. P. Ji¹⁵, X. B. Ji¹, 16 X. L. Ji^{1,a}, L. W. Jiang⁵¹, X. S. Jiang^{1,a}, X. Y. Jiang³⁰, J. B. Jiao³³, Z. Jiao¹⁷, D. P. Jin^{1,a}, S. Jin¹, T. Johansson⁵⁰, 17 A. Julin⁴³, N. Kalantar-Nayestanaki²⁵, X. L. Kang¹, X. S. Kang³⁰, M. Kavatsyuk²⁵, B. C. Ke⁵, P. Kiese²², 18 R. Kliemt¹⁰, B. Kloss²², O. B. Kolcu^{40B,h}, B. Kopf⁴, M. Kornicer⁴², A. Kupsc⁵⁰, W. Kühn²⁴, J. S. Lange²⁴, 19 M. Lara¹⁹, P. Larin¹⁴, H. Leithoff²², C. Leng^{49C}, C. Li⁵⁰, Cheng Li^{46,a}, D. M. Li⁵³, F. Li^{1,a}, F. Y. Li³¹, G. Li¹, 20 H. B. Li¹, H. J. Li¹, J. C. Li¹, Jin Li³², K. Li³³, K. Li¹³, Lei Li³, P. L. Li^{46,a}, P. R. Li⁴¹, Q. Y. Li³³, T. Li³³, 21 W. D. Li¹, W. G. Li¹, X. L. Li³³, X. N. Li^{1,a}, X. Q. Li³⁰, Y. B. Li², Z. B. Li³⁸, H. Liang^{46,a}, Y. F. Liang³⁶, 22 Y. T. Liang²⁴, G. R. Liao¹¹, D. X. Lin¹⁴, B. Liu³⁴, B. J. Liu¹, C. X. Liu¹, D. Liu^{46,a}, F. H. Liu³⁵, Fang Liu¹, 23 Feng Liu⁶, H. B. Liu¹², H. H. Liu¹, H. H. Liu¹⁶, H. M. Liu¹, J. Liu¹, J. B. Liu^{46,a}, J. P. Liu⁵¹, J. Y. Liu¹, K. Liu³⁹, 24 K. Y. Liu²⁷, L. D. Liu³¹, P. L. Liu^{1,a}, Q. Liu⁴¹, S. B. Liu^{46,a}, X. Liu²⁶, Y. B. Liu³⁰, Y. Y. Liu³⁰, Z. A. Liu^{1,a}, 25 Zhiqing Liu²², H. Loehner²⁵, Y. F. Long³¹, X. C. Lou^{1,a,g}, H. J. Lu¹⁷, J. G. Lu^{1,a}, Y. Lu¹, Y. P. Lu^{1,a}, C. L. Luo²⁸, 26 M. X. Luo⁵², T. Luo⁴², X. L. Luo^{1,a}, X. R. Lyu⁴¹, F. C. Ma²⁷, H. L. Ma¹, L. L. Ma³³, M. M. Ma¹, Q. M. Ma¹, 27 T. Ma¹, X. N. Ma³⁰, X. Y. Ma^{1,a}, Y. M. Ma³³, F. E. Maas¹⁴, M. Maggiora^{49A,49C}, Q. A. Malik⁴⁸, Y. J. Mao³¹, 28 Z. P. Mao¹, S. Marcello^{49A,49C}, J. G. Messchendorp²⁵, G. Mezzadri^{21B}, J. Min^{1,a}, T. J. Min¹, R. E. Mitchell¹⁹, 29 X. H. Mo^{1,a}, Y. J. Mo⁶, C. Morales Morales¹⁴, N. Yu. Muchnoi^{9,e}, H. Muramatsu⁴³, P. Musiol⁴, Y. Nefedov²³, 30 F. Nerling¹⁰, I. B. Nikolaev^{9,e}, Z. Ning^{1,a}, S. Nisar⁸, S. L. Niu^{1,a}, X. Y. Niu¹, S. L. Olsen³², Q. Ouyang^{1,a}, 31 S. Pacetti^{20B}, Y. Pan^{46,a}, P. Patteri^{20A}, M. Pelizaeus⁴, H. P. Peng^{46,a}, K. Peters^{10,i}, J. Pettersson⁵⁰, J. L. Ping²⁸, 32 R. G. Ping¹, R. Poling⁴³, V. Prasad¹, H. R. Qi², M. Qi²⁹, S. Qian^{1,a}, C. F. Qiao⁴¹, L. Q. Qin³³, N. Qin⁵¹, 33 X. S. Qin¹, Z. H. Qin^{1,a}, J. F. Qiu¹, K. H. Rashid⁴⁸, C. F. Redmer²², M. Ripka²², G. Rong¹, Ch. Rosner¹⁴, 34 X. D. Ruan¹², A. Sarantsev^{23, f}, M. Savrié^{21B}, C. Schnier⁴, K. Schoenning⁵⁰, S. Schumann²², W. Shan³¹, 35 M. Shao^{46,a}, C. P. Shen², P. X. Shen³⁰, X. Y. Shen¹, H. Y. Sheng¹, M. Shi¹, W. M. Song¹, X. Y. Song¹, 36 S. Sosio^{49A,49C}, S. Spataro^{49A,49C}, G. X. Sun¹, J. F. Sun¹⁵, S. S. Sun¹, X. H. Sun¹, Y. J. Sun^{46,a}, Y. Z. Sun¹, 37 Z. J. Sun^{1,a}, Z. T. Sun¹⁹, C. J. Tang³⁶, X. Tang¹, I. Tapan^{40C}, E. H. Thorndike⁴⁴, M. Tiemens²⁵, I. Uman^{40D}. 38 G. S. Varner⁴², B. Wang³⁰, B. L. Wang⁴¹, D. Wang³¹, D. Y. Wang³¹, K. Wang^{1,a}, L. L. Wang¹, L. S. Wang¹, 39 M. Wang³³, P. Wang¹, P. L. Wang¹, W. Wang^{1,a}, W. P. Wang^{46,a}, X. F. Wang³⁹, Y. Wang³⁷, Y. D. Wang¹⁴ 40 Y. F. Wang^{1,a}, Y. Q. Wang²², Z. Wang^{1,a}, Z. G. Wang^{1,a}, Z. H. Wang^{46,a}, Z. Y. Wang¹, Z. Y. Wang¹, T. Weber²², 41 D. H. Wei¹¹, P. Weidenkaff²², S. P. Wen¹, U. Wiedner⁴, M. Wolke⁵⁰, L. H. Wu¹, L. J. Wu¹, Z. Wu^{1,a}, L. Xia^{46,a}, 42 L. G. Xia³⁹, Y. Xia¹⁸, D. Xiao¹, H. Xiao⁴⁷, Z. J. Xiao²⁸, Y. G. Xie^{1,a}, Q. L. Xiu^{1,a}, G. F. Xu¹, J. J. Xu¹, L. Xu¹, 43 Q. J. Xu¹³, Q. N. Xu⁴¹, X. P. Xu³⁷, L. Yan^{49A,49C}, W. B. Yan^{46,a}, W. C. Yan^{46,a}, Y. H. Yan¹⁸, H. J. Yang^{34,j}, 44 H. X. Yang¹, L. Yang⁵¹, Y. X. Yang¹¹, M. Ye^{1,a}, M. H. Ye⁷, J. H. Yin¹, Z. Y. You³⁸, B. X. Yu^{1,a}, C. X. Yu³⁰, 45 J. S. Yu²⁶, C. Z. Yuan¹, W. L. Yuan²⁹, Y. Yuan¹, A. Yuncu^{40B,b}, A. A. Zafar⁴⁸, A. Zallo^{20A}, Y. Zeng¹⁸, Z. Zeng^{46,a}, 46 B. X. Zhang¹, B. Y. Zhang^{1,a}, C. Zhang²⁹, C. C. Zhang¹, D. H. Zhang¹, H. H. Zhang³⁸, H. Y. Zhang^{1,a}, J. Zhang¹, 47 J. J. Zhang¹, J. L. Zhang¹, J. Q. Zhang¹, J. W. Zhang^{1,a}, J. Y. Zhang¹, J. Z. Zhang¹, K. Zhang¹, L. Zhang¹, 48 S. Q. Zhang³⁰, X. Y. Zhang³³, Y. Zhang¹, Y. Zhang¹, Y. H. Zhang^{1,a}, Y. N. Zhang⁴¹, Y. T. Zhang^{46,a}, 49 Yu Zhang⁴¹, Z. H. Zhang⁶, Z. P. Zhang⁴⁶, Z. Y. Zhang⁵¹, G. Zhao¹, J. W. Zhao^{1,a}, J. Y. Zhao¹, J. Z. Zhao^{1,a}, 50 Lei Zhao^{46,a}, Ling Zhao¹, M. G. Zhao³⁰, Q. Zhao¹, Q. W. Zhao¹, S. J. Zhao⁵³, T. C. Zhao¹, Y. B. Zhao^{1,a}, 51 Z. G. Zhao^{46,a}, A. Zhemchugov^{23,c}, B. Zheng⁴⁷, J. P. Zheng^{1,a}, W. J. Zheng³³, Y. H. Zheng⁴¹, B. Zhong²⁸, 52 L. Zhou^{1,a}, X. Zhou⁵¹, X. K. Zhou^{46,a}, X. R. Zhou^{46,a}, X. Y. Zhou¹, K. Zhu¹, K. J. Zhu^{1,a}, S. Zhu¹, S. H. Zhu⁴⁵, 53

54	X. L. Zhu ³⁹ , Y. C. Zhu ^{46,a} , Y. S. Zhu ¹ , Z. A. Zhu ¹ , J. Zhuang ^{1,a} , L. Zotti ^{49A,49C} , B. S. Zou ¹ , J. H. Zou ¹
55	(BESIII Collaboration)
56	¹ Institute of High Energy Physics, Beijing 100049, People's Republic of China
57	² Beihang University, Beijing 100191, People's Republic of China
58	³ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
59	⁴ Bochum Ruhr-University, D-44780 Bochum, Germany
60	⁵ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
61	⁶ Central China Normal University, Wuhan 430079, People's Republic of China
62	⁷ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China
63	⁸ COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
64	⁹ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
65	¹⁰ GSI Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
66	¹¹ Guangxi Normal University, Guilin 541004, People's Republic of China
67	¹² Guangxi University, Nanning 530004, People's Republic of China
68	¹³ Hangzhou Normal University, Hangzhou 310036, People's Republic of China
69	¹⁴ Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
70	¹⁵ Henan Normal University, Xinxiang 453007, People's Republic of China
71	¹⁰ Henan University of Science and Technology, Luoyang 471003, People's Republic of China
72	¹ Huangshan College, Huangshan 245000, People's Republic of China
73	¹⁹ Indiana University, Changsha 410082, People's Republic of China ¹⁹ Indiana University, Plaaminaton, Indiana (7/105, UCA
74	20 (A)INEN Laboratori Nazionali di Erassati L 000// Erassati
75	(A)INTN Laboratori Nazionali at Mascall, 1-00044, Mascall, Italu: (B)INFN and University of Perusia, L06100, Perusia, Italy
70	²¹ (A)INFN Sectione di Ferrara L-1/199 Ferrara Italu: (B)University of Ferrara L-1/199 Ferrara Italu
70	²² Johannes Gutenbera University of Mainz Johann-Joachim-Becher-Wea 45 D-55099 Mainz Germany
70	²³ Joint Institute for Nuclear Research 1/1980 Dubna Moscow region Russia
80	²⁴ Justus-Liebia-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
81	²⁵ KVI-CART. University of Groningen. NL-9747 AA Groningen. The Netherlands
82	²⁶ Lanzhou University, Lanzhou 730000, People's Republic of China
83	²⁷ Liaoning University, Shenyang 110036, People's Republic of China
84	²⁸ Nanjing Normal University, Nanjing 210023, People's Republic of China
85	²⁹ Nanjing University, Nanjing 210093, People's Republic of China
86	³⁰ Nankai University, Tianjin 300071, People's Republic of China
87	³¹ Peking University, Beijing 100871, People's Republic of China
88	³² Seoul National University, Seoul, 151-747 Korea
89	³³ Shandong University, Jinan 250100, People's Republic of China
90	³⁴ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
91	³⁵ Shanxi University, Taiyuan 030006, People's Republic of China
92	³⁰ Sichuan University, Chengdu 610064, People's Republic of China
93	³¹ Soochow University, Suzhou 215006, People's Republic of China
94	³⁰ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
95	⁴⁰ (A) A L U : : : 06100 T L A L T L (D) L L D:
96	¹⁰ (A)Ankara University, Ub100 Tanaogan, Ankara, Turkey; (B)Istanbul Bugi
97	University, 34000 Eyup, Istanoul, Turkey; (C)Uluadg University, 10059 Bursa, Turkey, (D)Near East University, Niessia, North Commun. Manain, 10, Turkey,
98	⁴¹ University of Chinese Academy of Sciences, Beijing 1000/0, Beenle's Benyblic of Chinese
99	42 University of Hawaii Honolulu Hawaii 06899 USA
100	43 University of Minnesota Minneapolis Minnesota 55/55 USA
102	44 University of Rochester Rochester New York 1/697 USA
103	⁴⁵ University of Science and Technology Liaoning, Anshan 11/051 People's Republic of Ching
104	⁴⁶ University of Science and Technology of China. Hefei 230026. People's Republic of China
105	⁴⁷ University of South China, Hengyang 421001, People's Republic of China
106	⁴⁸ University of the Punjab, Lahore-54590, Pakistan

107	49 (A) University of Turin, I-10125, Turin, Italy; (B) University of Eastern
108	Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
109	⁵⁰ Uppsala University, Box 516, SE-75120 Uppsala, Sweden
110	⁵¹ Wuhan University, Wuhan 430072, People's Republic of China
111	⁵² Zhejiang University, Hangzhou 310027, People's Republic of China
112	53 Zhengzhou University, Zhengzhou 450001, People's Republic of China
113	^a Also at State Key Laboratory of Particle Detection and
114	Electronics, Beijing 100049, Hefei 230026, People's Republic of China
115	^b Also at Bogazici University, 34342 Istanbul, Turkey
116	^c Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
117	^d Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia
118	^e Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
119	^f Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
120	^g Also at University of Texas at Dallas, Richardson, Texas 75083, USA
121	^h Also at Istanbul Arel University, 34295 Istanbul, Turkey
122	i Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
123	^j Also at Institute of Nuclear and Particle Physics, Shanghai Key Laboratory for
124	Particle Physics and Cosmology, Shanghai 200240, People's Republic of China

(Dated: November 3, 2016)

Using 567 pb⁻¹ of data collected with the BESIII detector at a center-of-mass energy of $\sqrt{s} = 4.599 \text{ GeV}$, near the $\Lambda_c^+ \bar{\Lambda}_c^-$ threshold, we study the singly Cabibbo-suppressed decays $\Lambda_c^+ \to p\pi^+\pi^-$ and $\Lambda_c^+ \to pK^+K^-$. By normalizing with respect to the Cabibbo-favored decay $\Lambda_c^+ \to p\pi^-\pi^+$, we obtain ratios of branching fractions: $\frac{\mathcal{B}(\Lambda_c^+ \to p\pi^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (6.70 \pm 0.48 \pm 0.25)\%$, $\frac{\mathcal{B}(\Lambda_c^+ \to p\phi)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.81 \pm 0.33 \pm 0.13)\%$, and $\frac{\mathcal{B}(\Lambda_c^+ \to pK^+K_{non-\phi}^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$, where the uncertainties are statistical and systematic, respectively. The absolute branching fractions are also presented. Among these measurements, the decay $\Lambda_c^+ \to p\pi^+\pi^-$ is observed for the first time, and the precision of the branching fraction for $\Lambda_c^+ \to pK^+K_{non-\phi}^-$ and $\Lambda_c^+ \to p\phi$ is significantly improved.

PACS numbers: 14.20.Lq, 13.30.Eg, 13.66.Bc, 12.38.Qk

Hadronic decays of charmed baryons provide an ide-152 127 128 al laboratory to understand the interplay of the weak₁₅₃ and strong interaction in the charm region [1-9], which₁₅₄ 129 is complementary to charmed mesons. They also pro-vide essential input for studying the decays of *b*-flavored¹⁵⁵ 130 131 hadrons involving a Λ_c in the final state [10, 11]. In 132 contrast to the charmed meson decays, which are usu-133 ally dominated by factorizable amplitudes, decays of 134 charmed baryons receive sizable nonfactorizable contri-135 butions from W-exchange diagrams, which are subject to 136 color and helicity suppression. The study of nonfactoriz- $^{101}_{162}$ able contributions is critical to understand the dynamics $^{163}_{163}$ 137 138 of charmed baryons decays. 139

Since the first discovery of the ground state charmed 140 baryon Λ_c in 1979 [12, 13], progress with charmed ¹⁶⁵ baryons has been relatively slow, due to a scarcity of ¹⁶⁷ experimental data. Recently, based on an e^+e^- anni-¹⁶⁸ hilation data sample of 567 pb⁻¹ [14] at a center-of-¹⁶⁸ 141 142 143 144 mass (c.m.) energy of $\sqrt{s} = 4.599$ GeV, the BESIII¹⁶⁹ 145 Collaboration measured the absolute branching fractions¹⁷⁰ 146 (BF) of twelve Cabibbo-favored (CF) Λ_c^+ hadronic de-171 147 cays with a significantly improved precision [15]. For₁₇₂ 148 many other CF charmed baryon decay modes and most₁₇₃ 149 of the singly Cabibbo-suppressed (SCS) decays, however,174 150 no precision measurements are available; many of them175 151

even have not yet been measured [16]. As a consequence, we are not able to distinguish between the theoretical predictions among the different models [3–9].

The SCS decay $\Lambda_c^+ \to p\pi^+\pi^-$ proceeds via the external W-emission, internal W-emission and W-exchange processes, while the SCS decay $\Lambda_c^+ \to pK^+K^-$ proceeds via the internal W-emission and W-exchange diagrams only. Precisely measuring and comparing their BFs may help to reveal the Λ_c internal dynamics [1]. A measurement of the SCS mode $\Lambda_c^+ \to p\phi$ is of particular interest because it receives contributions only from the internal W-emission diagrams, which can reliably be obtained by a factorization approach [1]. An improved measurement of the $\Lambda_c^+ \to p\phi$ BF is thus essential to validate theoretical models and test the application of large- N_c factorization in the charmed baryon sector [17], where, N_c is the number of colors.

In this Letter, we describe a search for the SCS decays $\Lambda_c^+ \to p\pi^+\pi^-$ and present an improved measurement of the $\Lambda_c^+ \to pK^+K^-_{\text{non-}\phi}$ and $\Lambda_c^+ \to p\phi$ BFs. The BFs are measured relative to the CF mode $\Lambda_c^+ \to pK^-\pi^+$. Our analysis is based on the same data sample as that used in Ref. [15] collected by the BESIII detector. Details on the features and capabilities of the BESIII detector can

126

125

¹⁷⁶ be found in Ref. [18]. Throughout this Letter, charge-233
¹⁷⁷ conjugate modes are implicitly included, unless otherwise234
¹⁷⁸ stated.

The GEANT4-based [19] Monte Carlo (MC) simula-236 179 tions of e^+e^- annihilations are used to understand the²³⁷ 180 backgrounds and to estimate detection efficiencies. The238 181 generator KKMC [20] is used to simulate the beam-239 182 energy spread and initial-state radiation (ISR) of the240 183 e^+e^- collisions. The inclusive MC sample includes $\Lambda_c^+\bar\Lambda_c^-{}^{_{241}}$ 184 events, charmed meson $D_{(s)}^{(*)}$ pair production, ISR re-²⁴² 185 turns to lower-mass ψ states, and continuum processes 186 $e^+e^- \to q\bar{q} \ (q=u,d,s)$. Decay modes as specified in the 187 PDG [16] are modeled with EVTGEN [21, 22]. Signal 188 MC samples of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ are produced in which the 189 Λ_c^+ decays to the interested final state $(pK^-\pi^+, p\pi^+\pi^-)$ 190 or pK^+K^-) together with the $\bar{\Lambda}_c^-$ decaying generically 191 to all possible final states. 192

Charged tracks are reconstructed from hits in the MDC 193 and are required to have polar angles within $|\cos\theta| < |\cos\theta|$ 194 0.93. The points of closest approach of the charged tracks 195 to the interaction point (IP) are required to be within 1 196 cm in the plane perpendicular to the beam (V_r) and ± 10 197 cm along the beam (V_z) . Information from the TOF sys-198 tem and dE/dx in the MDC are combined to form PID 199 confidence levels (C.L.) for the π , K and p hypotheses. 200 Each track is assigned to the particle type with the high-201 est PID C.L.. To avoid backgrounds from beam interac-202 tions with residual gas or detector materials (beam pipe 203 and MDC inner wall), a further requirement $V_r < 0.2$ cm 204 is imposed for proton. 205

 Λ_c^+ candidates are reconstructed by considering all 206 combinations of charged tracks in the final states of in-207 terest $pK^{-}\pi^{+}$, $p\pi^{+}\pi^{-}$ and $pK^{+}K^{-}$. Two variables, 208 the energy difference $\Delta E = E - E_{\text{beam}}$ and the beam-constrained mass $M_{\text{BC}} = \sqrt{E_{\text{beam}}^2/c^4 - p^2/c^2}$, are used²⁴³ to identify the Λ_c^+ candidates. Here, E_{beam} is the beam²⁴⁵ 209 210 211 energy, and E(p) is the reconstructed energy (momen-²⁴⁵ 212 tum) of the Λ_c^+ candidate in the e^+e^- c.m. system. A 213 Λ_c^+ candidate is accepted with $M_{\rm BC} > 2.25 {\rm GeV}/c^2$ and²⁴⁷ 214 $|\Delta E| < 20$ MeV (corresponding to 3 time of resolution).²⁴⁸ 215 For a given signal mode, we accept only one candidate per 216 Λ_c charge per event. If multiple candidates are found, the $^{\rm 250}$ 217 one with the smallest $|\Delta E|$ is selected. The ΔE sideband²⁵¹ 218 region, $40 < |\Delta E| < 60$ MeV, is defined to investigate²⁵² 219 potential backgrounds. 220

For the $\Lambda_c^+ \to p\pi^+\pi^-$ decay, we reject K_S^0 and Λ candidates by requiring $|M_{\pi^+\pi^-} - M_{K_S^0}^{PDG}| > 15 \text{ MeV}/c_{256}^{255}$ and $|M_{p\pi^-} - M_{\Lambda}^{PDG}| > 6 \text{ MeV}/c^2$, corresponding to 3_{257} times of the resolution, where $M_{K_S^0}^{PDG}$ (M_{Λ}^{PDG}) is the K_S^0 (Λ) mass quoted from the PDG [16] and $M_{\pi^+\pi^-}^{259}$ ($M_{p\pi^-}$) is the $\pi^+\pi^-$ ($p\pi^-$) invariant mass. These re-²⁶⁰ quirements suppress the peaking backgrounds of the CF²⁶¹ decays $\Lambda_c^+ \to \Lambda\pi^+$ and $\Lambda_c^+ \to pK_S^0$, which have the same²⁶² final state as the signal.

With the above selection criteria, the $M_{\rm BC}$ distribu-264 tions are depicted in Fig. 1 for the decays $\Lambda_c^+ \to p K^- \pi^+_{265}$ and $\Lambda_c^+ \to p \pi^+ \pi^-$ and in Fig. 2 (a) for the decay266 $\Lambda^+_c \to pK^+K^-$. Prominent Λ^+_c signals are observed. The inclusive MC samples are used to study potential backgrounds. For the decays $\Lambda^+_c \to pK^-\pi^+$ and $\Lambda^+_c \to pK^+K^-$, no peaking background is evidenced in the $M_{\rm BC}$ distributions. While for the decay $\Lambda^+_c \to p\pi^+\pi^-$, the peaking backgrounds of 28.2 ± 1.6 events from the decays $\Lambda^+_c \to \Lambda\pi^+$ and $\Lambda^+_c \to pK^0_S$ are expected, where the uncertainty comes from the measured BFs in Ref. [15]. The cross feed between the decay modes is negligible by the MC studies.

FIG. 1. (color online). Distributions of $M_{\rm BC}$ for the decays (a) $\Lambda_c^+ \to p K^- \pi^+$ and (b) $\Lambda_c^+ \to p \pi^+ \pi^-$. Points with error bar are data, the blue solid lines show the total fits, the blue long dashed lines are the combinatorial background shapes, and the red long dashed histograms are data from the ΔE sideband region for comparison. In (b), the green shaded histogram is the peaking background from the CF decays $\Lambda_c^+ \to p K_S^0$ and $\Lambda_c^+ \to \Lambda \pi^+$. The insert plot in (b) shows the $\pi^+\pi^-$ invariant mass distribution with additional requirement $|\Delta E| < 8$ MeV and 2.2836 $< M_{BC} < 2.2894$ GeV/ c^2 , where the dots with error bar are for the data, the blue solid histogram shows the fit curve from PWA, and the green shaded histogram shows background estimated from the M_{BC} sideband region.

To obtain the signal yields of the decays $\Lambda_c^+ \to p K^- \pi^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$, a maximum likelihood fit is performed to the corresponding $M_{\rm BC}$ distributions. The signal shape is modeled with the MC simulated shape convoluted with a Gaussian function representing the resolution difference and potential mass shift between the data and MC simulation. The combinatorial background is modeled by an ARGUS function [23]. In the decay $\Lambda_c^+ \to p \pi^+ \pi^-$, the peaking background is included in the fit, and is modeled with the MC simulated shape convoluted with the same Gaussian function for the signal, while the magnitude is fixed to the MC prediction. The fit curves are shown in Fig. 1. The $M_{\rm BC}$ distribution for events in the ΔE sideband region is also shown in Fig. 1(b) and a good agreement with the fitted background shape is indicated. The signal yields are summarized in Table I.

For the decay $\Lambda_c^+ \to pK^+K^-$, a prominent ϕ signal is observed in the $M_{K^+K^-}$ distribution, as shown in Fig. 2 (b). To determine the signal yields via ϕ (N_{sig}^{ϕ}) and non- ϕ $(N_{\text{sig}}^{\text{non-}\phi})$ processes, and to better model the background, we perform a two-dimensional unbinned extended maximum likelihood fit to the M_{BC} versus $M_{K^+K^-}$ distributions for events in the ΔE signal region and sideband re-

FIG. 2. (color online). Distributions of $M_{\rm BC}$ (left) and₂₉₅ $M_{K^+K^-}$ (right) for data in the ΔE signal region (upper) and₂₉₆ sideband region (bottom) for the decay $\Lambda_c^+ \to pK^+K^-$. The₂₉₇ blue solid curves are for the total fit results, the red dashdotted curves show the $\Lambda_c^+ \to p\phi \to pK^+K^-$ signal, the green²⁹⁹ dotted curves show the $\Lambda_c^+ \to pK^+K^-_{\text{non-}\phi}$ signal, the blue²⁹⁹ long-dashed curves are the background with ϕ production, and the magenta dashed curves are the non- ϕ background.

gion simultaneously. In the M_{BC} distribution, the shapes 267 of Λ_c signal (via ϕ or non- ϕ process) and background, de-268 noted as $S_{M_{\rm BC}}$ and $B_{M_{\rm BC}}$, are modeled similarly to those in the decay $\Lambda_c^+ \to p\pi^+\pi^-$. In the $M_{K^+K^-}$ distribution, the ϕ shape for the Λ_c process $(\Lambda_c^+ \to p\phi \to pK^+K^-)$, 269 270 271 $\mathbf{S}^{\phi}_{M_{KK}},$ is modeled with a relativistic Breit-Wigner func-272 tion convoluted with a Gaussian function representing 273 the detector resolution, while that for the Λ_c decay with-out ϕ ($\Lambda_c^+ \to pK^+K^-$), $S_{M_{KK}}^{\text{non-}\phi}$, is represented by the₃₀₁ 274 275 MC shape with a uniform distribution in K^+K^- phase₃₀₂ 276 space. The shape for the non- Λ_c background including $\phi_{\scriptscriptstyle 303}$ 277 state, $B^{\phi}_{M_{KK}}$, has the same parameters as $S^{\phi}_{M_{KK}}$, while₃₀₄ 278 that for the background without ϕ , $B_{M_{KK}}^{\text{non-}\phi}$, is described³⁰⁵ by a 3rd-order polynomial function. Detailed MC studies³⁰⁶ 279 280 indicate the non- Λ_c background (both with and without³⁰⁷ 281 ϕ included) have the same shapes and yields in both ΔE^{308} 282 signal and sideband regions, where the yields are denoted $^{\scriptscriptstyle 309}$ 283 as N_{bkg}^{ϕ} and $N_{bkg}^{non-\phi}$, respectively. The Likelihoods for³¹⁰ the events in ΔE signal and sideband regions are given³¹¹ 284 285 312 in equation (1) and (2), respectively. 286 313

$$\mathcal{L}_{\text{sig}} = \frac{e^{-(N_{\text{sig}}^{\phi} + N_{\text{sig}}^{\text{non-}\phi} + N_{\text{bkg}}^{\phi} + N_{\text{bkg}}^{\text{non-}\phi})}}{N_{\text{sig}}!}$$

$$= \frac{N_{\text{sig}}^{N_{\text{sig}}} N_{\text{sig}}!}{N_{\text{sig}}!}$$

$$= \frac{N_{\text{sig}}^{N_{\text{sig}}} N_{\text{sig}}!}{N_{\text{sig}}!}$$

$$= \frac{N_{\text{sig}}^{N_{\text{sig}}} N_{\text{BC}}(M_{\text{BC}}^{i}) \times S_{M_{KK}}^{\phi}(M_{K^{+}K^{-}}^{i})}{N_{\text{sig}}!}$$

$$= \frac{N_{\text{sig}}^{non-\phi} S_{M_{\text{BC}}}(M_{\text{BC}}^{i}) \times S_{M_{KK}}^{non-\phi}(M_{K^{+}K^{-}}^{i})}{N_{\text{bkg}}!}$$

$$= \frac{N_{\text{bkg}}^{\phi} B_{M_{\text{BC}}}(M_{\text{BC}}^{i}) \times B_{M_{KK}}^{\phi}(M_{K^{+}K^{-}}^{i})}{N_{\text{bkg}}!}$$

$$= \frac{N_{\text{bkg}}^{\phi} B_{M_{\text{BC}}}(M_{\text{BC}}^{i}) \times B_{M_{KK}}^{non-\phi}(M_{K^{+}K^{-}}^{i})}{N_{\text{bkg}}!}$$

$$\mathcal{L}_{\text{side}} = \frac{e^{-(N_{\text{bkg}}^{\phi} + N_{\text{bkg}}^{\text{non-}\phi})}}{N_{\text{side}}}$$

$$\times \prod_{i=1}^{N_{\text{side}}} [N_{\text{bkg}}^{\phi} B_{M_{\text{BC}}}(M_{\text{BC}}^{i}) \times B_{M_{KK}}^{\phi}(M_{K^{+}K^{-}}^{i})$$

$$+ N_{\text{bkg}}^{\text{non-}\phi} B_{M_{\text{BC}}}(M_{\text{BC}}^{i}) \times B_{M_{KK}}^{\text{non-}\phi}(M_{K^{+}K^{-}}^{i})], (2)$$

where the parameter $N_{\rm sig}$ ($N_{\rm side}$) is the total number of selected candidates in the ΔE signal (sideband) region, and $M_{\rm BC}^i$ and $M_{K^+K^-}^i$ are the values of $M_{\rm BC}$ and $M_{K^+K^-}$ for the *i*-th event. We use the product of PDFs, since the $M_{\rm BC}$ and $M_{K^+K^-}$ are verified to be uncorrelated for each component by MC simulations.

The signal yields are extracted by minimizing the negative log-likelihood $-\ln \mathcal{L} = (-\ln \mathcal{L}_{sig}) + (-\ln \mathcal{L}_{side})$. The fit curves are shown in Fig. 2 and the yields are listed in Table I. The significance is estimated by comparing the likelihood values with and without the signal components included, incorporating with the change of the number of free parameters, listed in Table I.

TABLE I. Summary of signal yields in data (N_{signal}), detection efficiencies (ε), and the significances. The errors are statistical only.

Decay modes	$N_{\rm signal}$	$\varepsilon(\%)$	significance
$\Lambda_c^+ \to p K^- \pi^+$	5940 ± 85	48.0 ± 0.1	-
$\Lambda_c^+ \to p \pi^+ \pi^-$	495 ± 35	59.7 ± 0.1	16.2σ
$\Lambda_c^+ \to p K^+ K^- (\text{via } \phi)$	44 ± 8	40.2 ± 0.1	9.6σ
$\Lambda_c^+ \to p K^+ K^- (\text{non-}\phi)$	38 ± 9	32.7 ± 0.1	5.4σ

In the decays $\Lambda_c^+ \to p K^- \pi^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$, the detection efficiencies are estimated with data-driven MC samples generated according to the results of a simple partial wave analysis (PWA) by the covariant helicity coupling amplitude [24, 25] for the quasi-two body decays. In the decay $\Lambda_c^+ \to p \pi^+ \pi^-$, prominent structures arising from $\rho^0(770)$ and $f_0(980)$ resonances are observed in the $M_{\pi^+\pi^-}$ distribution as shown in the insert plot of Fig. 1(b), and are included in PWA. Due to the limited statistics and relatively high background, the PWA does not allow for a reliable extraction of BFs for intermediate states; it however does describe the kinematics well and it is reasonable for the estimation of the detection efficiency. The corresponding uncertainty is taken into account as a systematic error. For the decays $\Lambda_c^+ \to p K^+ K^-$ via ϕ or non- ϕ , the detection efficiencies are estimated with phase space MC samples, where the angular distribution of the decay $\phi \to K^+ K^-$ is considered.

We measure the relative BFs of the SCS decays with respect to that of the CF decay $\Lambda_c^+ \rightarrow pK^-\pi^+$, and the absolute BFs by incorporating $\mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+) =$ $(5.84 \pm 0.27 \pm 0.23)\%$ from the most recent BESIII measurement [15]. Several sources of systematic uncertainty, including tracking and PID efficiencies, the total number of $\Lambda_c^+\bar{\Lambda}_c^-$ pairs in data, cancel when calculating the ratio of BFs, due to the similar kinematics between the₃₆₈

326 SCS and CF decays. When calculating these uncertain-369

327 ties, cancellation has been taken into account whenever 370

328 pos

possible.

371 372 373

388

TABLE II. The systematic uncertainties (in %) in the relative $^{374}_{374}$ BF measurements. The uncertainty of the reference BF $\mathcal{B}_{ref._{375}}$ applies only to the absolute BF measurements.

Sources	$\Lambda_c^+ \to p \pi^+ \pi^-$	$\Lambda_c^+ \to p\phi$	$\Lambda_c^+ \to p K^+ K_{\text{non-}\phi}^-$
Tracking	1.1	2.6	1.6
PID	1.3	1.5	1.9
V_r requirement	0.6	2.5	2.5
K_S^0/Λ vetoes	0.7	_	_
ΔE requirement	0.5	0.7	0.9
Fit	2.7	5.8	6.6
Cited BR	_	1.0	_
MC model	1.4	1.0	1.1
MC statistics	0.3	0.4	0.4
Total	3.7	7.2	7.6
$\mathcal{B}_{\mathrm{ref.}}$	6.1	6.1	6.1

329 330

The uncertainties associated with tracking and PID³⁸⁹ 331 efficiencies for π , K and proton are studied as a func-³⁹⁰ 332 tion of (transverse) momentum with samples of $e^+e^- \rightarrow^{_{391}}$ 333 $\pi^+\pi^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$ and $p\bar{p}\pi^+\pi^-$ from data taken³⁹² 334 at $\sqrt{s} > 4.0$ GeV. To extract tracking efficiency for par-³⁹³ 335 ticle *i* ($i = \pi$, K, or ptoton), we select the corresponding³⁹⁴ 336 samples by missing particle i with high purity, the ratio³⁹⁵ 337 to find the track i around the missing direction is the³⁹⁶ 338 tracking efficiency. Similarly, we select the control sam-397 330 ple without PID requirement for particle i, and then the³⁹⁸ 340 PID requirement is further implemented. The PID effi-³⁹⁹ 341 ciency is the ratio between the number of candidate with⁴⁰⁰ 342 and without PID requirement. The differences on the401 343 efficiency between the data and MC simulation weight-402 344 ed by the (transverse) momentum according to data are₄₀₃ 345 assigned as uncertainties. 346

The uncertainties due to the V_r requirements and₄₀₅ 347 K_S^0/Λ vetoes (in $\Lambda_c^+ \to p\pi^+\pi^-$ only) are investigated₄₀₆ 348 by repeating the analysis with alternative requirements₄₀₇ $(V_r < 0.25 \text{ cm}, |M_{\pi^+\pi^-} - M_{K_S^0}^{\text{PDG}}| > 20 \text{ MeV}/c^2 \text{ and}_{408}$ 349 350 $|M_{p\pi^-} - M_{\Lambda}^{\text{PDG}}| > 8 \text{ MeV}/c^2$, respectively). The result-409 351 ing differences in the BF are taken as the uncertainties.⁴¹⁰ 352 Uncertainties related to the ΔE resolution are estimat-411 353 ed by widening the ΔE windows from 3σ to 4σ of the⁴¹² 354 resolution. 413 355

For the decays $\Lambda_c^+ \to p K^- \pi^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$, the⁴¹⁴ 356 signal yields are determined from fits to the $M_{\rm BC}$ dis-415 357 tributions. Alternative fits are carried out by varying⁴¹⁶ 358 the fit range, signal shape, background shape and the417 359 expected number of peaking background. The resultant⁴¹⁸ 360 changes in the BFs are taken as uncertainties. In the₄₁₉ 361 decay $\Lambda_c^+ \to p K^+ K^-$, the uncertainties associated with₄₂₀ 362 the fit are studied by varying the fit ranges, signal and₄₂₁ 363 background shapes for both the $M_{\rm BC}$ and $M_{K^+K^-}$ dis-422 364 tributions and ΔE sideband region. 365 423

The following four aspects are considered for the MC_{424} simulation model uncertainty. *a*) The uncertainties relat-425

ed to the beam energy spread are investigated by changing its value in simulation by ± 0.4 MeV, where the nominal values is 1.5 MeV determined by data. The larger change in the measurement is taken as systematic uncertainty. b) The uncertainties associated with the input line shape of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ cross section is estimated by replacing the line shape directly from BESIII data with that from Ref. [26]. c) The Λ_c^+ polar angle distribution in e^+e^- rest frame is parameterized with $1 + \alpha \cos^2 \theta$, where the α value is extracted from data. The uncertainties due to the Λ_c^+ polar angle distribution is estimated by changing α value by one standard deviation. d) The decays $\Lambda_c^+ \to p K^- \pi^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$ are modeled by a data-driven method according to PWA results. The corresponding uncertainties are estimated by changing the intermediate states included, changing the parameters of the intermediate states by one standard deviation quoted in the PDG [16], and varying the background treatment in the PWA and the output parameters for the coupling. Assuming all of the above PWA uncertainties are independent, the uncertainty related to MC modelling is the quadratic sum of all individual values. For the non- ϕ decay $\Lambda_c^+ \to p K^+ K^-$, phase space MC samples with Swave for K^+K^- pair is used to estimate the detection efficiency. An alternative MC sample with *P*-wave between K^+K^- pair is also used, and the resultant difference in efficiency is taken as the uncertainty. The uncertainties due to limited MC statistics in both the measured and reference modes are taken into account.

Assuming all uncertainties, summarized in Table II, are independent, the total uncertainties in the relative BF measurements are obtained by adding the individual uncertainties in quadrature. For the absolute BF measurements, the uncertainty due to the reference BF $\mathcal{B}_{ref.}(\Lambda_c^+ \to pK^-\pi^+)$, listed in Table II too, is included.

In summary, based on 567 pb⁻¹ of e^+e^- annihilation data collected at $\sqrt{s} = 4.599$ GeV with the BESIII detector, we present the first observation of the SCS decays $\Lambda_c^+ \to p\pi^+\pi^-$, and improved (or comparable) measurements of the $\Lambda_c^+ \to p\phi$ and $\Lambda_c^+ \to pK^+K_{\text{non-}\phi}^-$ BFs comparing to PDG values [16]. The relative BFs with respect to the CF decay $\Lambda_c^+ \to pK^-\pi^+$ are measured. Taking $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (5.84 \pm 0.27 \pm 0.23)\%$ from Ref. [15], we also obtain absolute BFs for the SCS decays. All the results are summarized in Table III. The results provide important data to understand the dynamics of Λ_c^+ decays. They especially help to distinguish predictions from different theoretical models and understand contributions from factorizable effects [1].

The BESIII collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11235011, 11322544, 11335008, 11425524, 11322544, 11375170, 11275189, 11475169, 11475164; the Chinese Academy of Sciences

Decay modes	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{ref.}}$ (This work)	$\mathcal{B}_{\rm mode}/\mathcal{B}_{\rm ref.}$ (PDG average)
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	$(6.9 \pm 3.6) \times 10^{-2}$
$\Lambda_c^+ \to p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$(1.64 \pm 0.32) \times 10^{-2}$
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi\text{)}$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$(7 \pm 2 \pm 2) \times 10^{-3}$
_	$\mathcal{B}_{\text{mode}}$ (This work)	$\mathcal{B}_{\text{mode}}$ (PDG average)
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$	$(3.5 \pm 2.0) \times 10^{-3}$
$\Lambda_c^+ \to p\phi$	$(1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3}$	$(8.2 \pm 2.7) \times 10^{-4}$
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi\text{)}$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$

472

479

480

TABLE III. Summary of relative and absolute BFs, and comparing with the results from PDG [16]. Uncertainties are statistical, experimental systematic, and reference mode uncertainty, respectively.

(CAS) Large-Scale Scientific Facility Program; the CAS₄₃₇
Center for Excellence in Particle Physics (CCEPP);
the Collaborative Innovation Center for Particles and
Interactions (CICPI); Joint Large-Scale Scientific Facility
Funds of the NSFC and CAS under Contracts
Nos. 11179007, U1232201, U1332201; CAS under
Center to National Contracts
Kicking K

432 Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45;443 433 100 Talents Program of CAS; INPAC and Shanghai444

433 100 Talends Frogram of Child, INTRO and Shanghana 434 Key Laboratory for Particle Physics and Cosmology;445

435 German Research Foundation DFG under Contract No.446

436 Collaborative Research Center CRC-1044, FOR 2359;447

Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U. S. Department of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtz Centre for Heavy Ion Research GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

- ⁴⁴⁸ [1] H. Y. Cheng, Front. Phys. **10**, no. 6, 101406 (2015). ⁴⁶⁹
- 449 [2] C. D. Lu, W. Wang and F. S. Yu, Phys. Rev. D 93,470
 450 056008 (2016).
- ⁴⁵¹ [3] Y. Kohara, Nuovo Cim. A **111**, 67 (1998).
- [4] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, A. G.⁴⁷³
 Rusetsky, Phys. Rev. D 57, 5632 (1998).
- [5] K. K. Sharma, R. C. Verma, Phys. Rev. D 55, 7067475
 (1997). 476
- [6] T. Uppal, R. C. Verma, M. P. Khanna, Phys. Rev. D 49,477
 3417 (1994).
- ⁴⁵⁸ [7] P. Zenczykowski, Phys. Rev. D **50**, 402 (1994).
- ⁴⁵⁹ [8] J. G. Korner, M. Kramer, Z. Phys. C 55, 659 (1992).
- [9] J. G. Korner, M. Kramer, J. Willrodt, Z. Phys. C 2, 117481
 (1979).
- 462 [10] W. Detmold, C. Lehner, S. Meinel, 92, 034503 (2015). 483
- 463 [11] R. Dutta, Phys. Rev. D **93**, 054003 (2016).
- 464 [12] G. S. Abrams *et al.* [MARKIII Collaboration], Phys. Rev. 485
 465 Lett. 44, 10 (1980). 486
- 466 [13] A. M. Cnops *et al.* [BNL-0427 Collaboration], Phys. Rev.487
 467 Lett. 42, 197 (1979).
- ⁴⁶⁸ [14] M. Ablikim *et al.* [BESIII Collaboration], Chin. Phys. C

39, 093001 (2015).

- [15] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. Lett. **116**, 052001 (2016).
- [16] K. A. Olive *et al.* [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
- [17] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
- [18] M. Ablikim *et al.* [BESIII Collaboration], Nucl. Instrum. Meth. A **614**, 345 (2010).
- [19] S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003).
- [20] S. Jadach, B. F. L. Ward, Z. Was, Phys. Rev. D 63, 113009 (2001).
- [21] R. G. Ping, Chin. Phys. C **32**, 599 (2008).
- [22] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
- [23] H. Albrecht *et al.* [ARGUS Collaboration], Phys. Lett. B 241, 278 (1990).
- [24] S. U. Chung, Phys. Rev. D 57, 431 (1998).
- [25] S. U. Chung, Phys. Rev. D 48, 1225 (1993).
- [26] G.Pakhlova *et al.* [Belle Collaboration], Phys. Rev. Lett. 101, 172001 (2008).