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Abstract
In this article, a pair of second-order nondifferentiable symmetric dual model in optimization problem is formulated over

arbitrary cones. For a differentiable function, we consider the definition of strongly K-pseudobonvexity convexity. Next, we
derive the appropriate duality results under aforesaid assumptions.
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1. Introduction

In the recent years, the analysis of multiobjective optimization problems has been a focal issue. Such
multiobjective optimization problems are useful mathematical models for the investigation of real-world
problems. Also many researchers motivated by works of the concept of second-order duality in nonlinear
problems, introduced by Mangasarian [10] have also worked in this area. The advantage of second-order
duality is considered over first-order as it gives more closer bounds. Hanson [8] in his study has cited one
example which demonstrates the application of second-order duality in somewhat different perspective.

In the last several years, several optimality and duality results have been obtained for multiobjective
fractional programming problems. Multiobjective fractional problem and its duality relations have been
assumed under higher-order (f,α, ρ,d)-convexity by Chen in [1]. Later on in [13], Suneja et al. derived the
higher-order Mond-Weir and Schaible type nondifferentiable dual programs and their duality theorems
under higher-order (f, ρ,σ)-type I-assumptions. Ying [15] studied higher-order multiobjective symmetric
fractional problem and formulated its Mond-Weir type dual and duality theorems were proved under
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higher-order (f,α, ρ,d)-convexity assumptions. Many researchers have also worked in the same directions
(see [3–6, 9, 11, 14]).

The purpose of the present work is to study second order symmetric duality over arbitrary cones for
nondifferentiable type programs under strongly K-pseudobonvexity assumptions. The paper is organized
as follows. In Section 2, we present some relevant and basic preliminaries. In Section 3, we formulate
a nondifferentiable second order symmetric dual problem with cone constraints and derive appropriate
duality results under strongly K-pseodobonvexity assumptions.

2. Preliminaries and definitions

Definition 2.1 ([2]). Let C be a compact convex set in Rn. The support function of C is defined by

s(x|C) = max{xTy : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential, that is, there exists a z ∈ Rn
such that s(y|C) > s(x|C) + zT (y− x)for every x ∈ C. The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For a convex set D ⊂ Rn, the normal cone to D at a point x ∈ D is defined by

ND(x) = {y ∈ Rn : yT (z− x) 5 0, for all z ∈ D}.

When C is a compact convex set, y ∈ NC(x) if and only if s(y|C) = xTy, or equivalently, x ∈ ∂s(y|C).

Let X ⊂ Rn and K ⊂ Rk be a closed convex pointed cone with intK 6= φ. Now, we consider the
definitions of K-pseudoinvex and K-pseudobonvex functions with respect to η.

Definition 2.2. A differentiable function f : X→ Rk is K-pseudoinvex at u ∈ Xwith respect to η : X×X −→
Rn, if for every (x,p) ∈ X× Rn,

−ηT (x,u)[∇uf(u)] /∈ int(K) =⇒ −[f(x) − f(u)] /∈ int(K).

Definition 2.3. A differentiable function f : X → Rk is strongly K-pseudoinvex at u ∈ X with respect to
η : X×X −→ Rn, if for every (x,p) ∈ X× Rn,

−ηT (x,u)[∇uf(u)] /∈ int(K) =⇒ [f(x) − f(u)] ∈ K.

Definition 2.4. A differentiable function f : X → Rk is K-pseudobonvex at u ∈ X with respect to η :
X×X −→ Rn, if for every (x,p) ∈ X× Rn,

−ηT (x,u)[∇uf(u) +∇uuf(u)}p] /∈ int(K) =⇒ −[f(x) − f(u) +
1
2
pT∇uuf(u)p] /∈ int(K).

Definition 2.5. A differentiable function f : X → Rk is strongly K-pseudobonvex at u ∈ X with respect to
η : X×X −→ Rn, if for every (x,p) ∈ X× Rn,

−ηT (x,u)[∇uf(u) +∇uuf(u)p] /∈ int(K) =⇒ [f(x) − f(u) +
1
2
pT∇uuf(u)p] ∈ K.

Remark 2.6.
1
2
pT∇uuf(u)p represents the vector of components(

1
2
pT∇uuf1(u)p,

1
2
pT∇uuf2(u)p), . . . ,

1
2
pT∇uufk(u)p

)
.
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Remark 2.7. For proving the strong and converse duality theorems, we need necessary conditions proposed
by Suneja et al. in [12]. They considered the the following multiobjective programming problem:

(VP) K-Minimize f(x),
subject to X0 = {x ∈ Rn : − g(x) ∈ Q, x ∈ C},

where f : Rn → Rk, g : Rn → Rm, C ⊂ Rn, K and Q are closed convex cones with nonempty interiors in
Rk and Rm, respectively.

Definition 2.8. A point u ∈ X0 is said to be a weak minimum of (VP), if there exists no other x ∈ X0 such
that f(u) − f(x) ∈ int(K).

Definition 2.9. The positive polar cone K∗ of K is defined as follows:

K∗ = {z ∈ Rp : xTz > 0, for all x ∈ K}.

Lemma 2.10. If u ∈ X0 is a weak minimum of (VP), then there exists ᾱ ∈ K∗ and β ∈ Q∗ not both zero such that

(ᾱT∇f(u) + β̄T∇g(u))T (x− u) > 0, ∀ x ∈ C,

β̄T∇g(u) = 0.

3. Second-order nondifferentiable symmetric duality model

In this section, we formulate the following pair of second-order nondifferentiable symmetric dual
programs over arbitrary constraints:

(NSOP)K-Minimize W(x,y, r,p) = f(x,y) + s(x|B) − yT r−
1
2
pT∇yyf(x,y)p,

subject to −

k∑
i=1

λi

[
∇yfi(x,y) − ri +∇yyfi(x,y)}p

]
∈ C∗

2 ,

yT
[ k∑

i=1

λi

(
∇yfi(x,y) − ri +∇yyfi(x,y)p

)]
> 0,

pT
[ k∑

i=1

λi

(
∇yfi(x,y) − ri +∇yyfi(x,y)p

)]
> 0,

x ∈ C1, r ∈ F, λ ∈ int(K∗),

(NSOD) K-Maximize T(u, v, t,q) = f(u, v) − s(v|F) + uT t−
1
2
qT∇uuf(u, v)q,

subject to
k∑

i=1

λi

[
∇ufi(u, v) + ti +∇uufi(u, v)q

]
∈ C∗

1 , (3.1)

uT
[ k∑

i=1

λi

(
∇ufi(u, v) + t+∇uufi(u, v)q

)]
6 0, (3.2)

qT
[ k∑

i=1

λi

(
∇ufi(u, v) + t+∇uufi(u, v)q

)]
6 0, (3.3)

v ∈ C2, t ∈ B, λ ∈ int(K∗),

where C1 and C2 are closed convex cones with non-empty interiors in Rn and Rm, respectively. C∗
1 and

C∗
2 are positive polar cones of C1 and C2, respectively, and f : Rn × Rm → Rk is differentiable function.

Let R0 and S0 be feasible solution of (NSOP) and (NSOD), respectively.
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Theorem 3.1 (Weak duality theorem). Let (x,y, λ, r,p) ∈ R0 and (u, v, λ, t,q) ∈ S0. Let

(i) f(., v) be strongly K-pseudobonvex and (.)T t be strongly K- psedoinvex at u with respect to η;
(ii) −f(x, .) be K-pseudobonvex and (.)T r be K- psedoinvex at y with respect to ξ;

(iii) η(x,u) + u+ q ∈ C1 for all x ∈ C1;
(iv) ξ(v,y) + y+ p ∈ C2 for all y ∈ C2.

Then

T(u, v, λ, t,q) −W(x,y, λ, r,p) /∈ int(K).

Proof. Suppose, on contrary
T(u, v, λ, t,q) −W(x,y, λ, r,p) ∈ int(K),

i.e., {
f(u, v) − s(v|F) + uT t−

1
2
qT∇uuf(u, v)q

−
(
f(x,y) + s(x|B) − yT r−

1
2
pT∇yyf(x,y)p

)}
∈ int(K).

(3.4)

From, hypothesis (iii) and (3.1), we obtain

(η(x,u) + u+ q)T
[ k∑

i=1

λi
(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
> 0,

ηT (x,u)
[ k∑

i=1

λi
(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
> −(u+ q)

[ k∑
i=1

λi
(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
,

which on using (3.2) and (3.3), it yields

ηT (x,u)
[ k∑

i=1

λi

(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
> 0

or

k∑
i=1

λi

(
ηT (x,u)

[
∇ufi(u, v) + ti +∇uufi(u, v)q

])
> 0. (3.5)

Since λ ∈ int (K∗), we have

−ηT (x,u)
[
∇uf(u, v) + t+∇uuf(u, v)q

]
/∈ int(K). (3.6)

From hypothesis (i), we obtain [
f(x, v) − f(u, v) +

1
2
qT∇uuf(u, v)q

]
∈ K

and

[xT t− uT t] ∈ K.

Combining above inequalities, we get

[f(x, v) + xT t− f(u, v) − uT t+
1
2
qT∇uuf(u, v)q] ∈ K. (3.7)
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From (3.6) and (3.7), we get

[f(x, v) + xT t− f(u, v) − uT t+
1
2
qT∇uuf(u, v)q] ∈ K. (3.8)

Similarly, using hypothesis (iii) and primal constraints, it follows that

ξT (v,y)
[
∇yf(x,y) − r+∇yyf(x,y)p

]
/∈ int(K).

Again, from hypothesis (ii), we obtain

[−f(x,y) + yT r+ f(x, v) − vT r+
1
2
pT∇yyf(x,y)p] /∈ int(K). (3.9)

Adding inequalities(3.4)-(3.8) and using the fact that xT t 6 s(x|B) and vT r 6 s(v|F), we have

[−f(x,y) + yT r+ f(x, v) − vT r+
1
2
pT∇yyf(x,y)p] ∈ int(K),

which contradicts (3.9). Hence the result is obtained.

Theorem 3.2 (Weak duality theorem). Let (x,y, λ, r,p) ∈ R0 and (u, v, λ, t,q) ∈ S0. Let

(i) f(., v) be K-pseudobonvex and (.)T t be K-psedoinvex at u with respect to η;
(ii) f(x, .) be strongly K-pseudoconcave and (.)T r be strongly K- psedoincave at y with respect to ξ;

(iii) η(x,u) + u+ q ∈ C1 for all x ∈ C1;
(iv) ξ(v,y) + y+ p ∈ C2 for all y ∈ C2.

Then

T(u, v, t,q) −W(x,y, r,p) /∈ int(K).

Proof. The proof is clear from Theorem 3.1.

For proving the strong and converse duality results, it is convenient to rewrite the (NSOP) and (NSOD)
in the given form.

(NSOP) K-Minimize W(x,y, r,p) =
(
f1(x,y) + s(x|B1) − y

T r1 −
1
2
pT∇yyf1(x,y)p, f2(x,y)

+ s(x|B2) − y
T r2 −

1
2
pT∇yyf2(x,y)p, . . . , fk(x,y) + s(x|Bk)

− yT rk −
1
2
pT∇yyfk(x,y)p

)
,

subject to −

k∑
i=1

λi

[
∇yfi(x,y) − ri +∇yyfi(x,y)}p

]
∈ C∗

2 ,

yT
[ k∑

i=1

λi

(
∇yfi(x,y) − ri +∇yyfi(x,y)p

)]
> 0,

pT
[ k∑

i=1

λi

(
∇yfi(x,y) − ri +∇yyfi(x,y)p

)]
> 0,

x ∈ C1, ri ∈ Fi (i = 1, 2, . . . , k), λ ∈ int(K∗),

(NSOD) K-Maximize T(u, v, t,q) =
(
f1(u, v) − s(v|F1) + u

T t1 −
1
2
qT∇uuf1(u, v)q, f2(u, v)
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− s(v|F2) + u
T t2 −

1
2
qT∇uuf2(u, v)q, . . . , fk(u, v) − s(v|Fk)

+ uT tk −
1
2
qT∇uufk(u, v)q

)
,

subject to
k∑

i=1

λi

[
∇ufi(u, v) + ti +∇uufi(u, v)q

]
∈ C∗

1 ,

uT
[ k∑

i=1

λi

(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
6 0,

qT
[ k∑

i=1

λi

(
∇ufi(u, v) + ti +∇uufi(u, v)q

)]
6 0,

v ∈ C2, ti ∈ Bi (i = 1, 2, . . . , k), λ ∈ int(K∗).

Theorem 3.3 (Strong duality theorem). Let (x̄, ȳ, r̄, p̄) be a weak minimum of (NSOP), and fix λ = λ̄ in (NSOD).
Assume that

(i) for every (v,q) ∈ X × Rm, v ∈ C2, {∇u(fiū, v̄) + t̄i +∇uufi(ū, v̄)q̄} is linearly independent, for every
i = 1, 2, . . . , k;

(ii) {∇uufi(ū, v̄)} is nonsingular, for every i = 1, 2, . . . , k;
(iii) if q̄T [∇ufi(ū, v̄) + t̄i +∇uufi(ū, v̄)q̄}] = 0, then q̄ = 0;
(iv) Rk+ ⊂ K.

Then, there exists r̄ ∈ F such that (x̄, ȳ, r̄, p̄) is a weak minimum for the problem (NSOD).

Proof. The proof of strong duality theorems follows almost same lines given by [7].

Remark 3.4. In case of symmetric programming problem, the proof remains the same as strong duality
theorems.

Theorem 3.5 (Strict converse duality theorem). Let (ū, v̄, t̄, q̄) be a weak minimum of (NSOD), and fix λ = λ̄

in (NSOP). Assume that
(i) for every (x,p) ∈ X × Rm, y ∈ C2, {∇y(fix̄, ȳ) − r̄i +∇yyfi(x̄, ȳ)p̄} is linearly independent for every
i = 1, 2, . . . , k;

(ii) {∇yyfi(x̄, ȳ)} is nonsingular, for every i = 1, 2, . . . , k;
(iii) if p̄T [∇yfi(x̄, ȳ) − r̄i +∇yyfi(x̄, ȳ)p̄}] = 0, then p̄ = 0;
(iv) Rk+ ⊂ K.

Then, there exists t̄ ∈ B such that (ū, v̄, t̄, q̄) is a weak minimum for the problem (NSOD).

Proof. The proof is obvious from Theorem 3.3.
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