Measurements of absolute branching fractions of $D^{0} \rightarrow K_{L}^{0} \phi, K_{L}^{0} \eta, K_{L}^{0} \omega$, and $K_{L}^{0} \eta^{\prime}$

M. Ablikim, ${ }^{1}$ M. N. Achasov, ${ }^{10, c}$ P. Adlarson, ${ }^{67}$ S. Ahmed, ${ }^{15}$ M. Albrecht, ${ }^{4}$ R. Aliberti, ${ }^{28}$ A. Amoroso, ${ }^{66 a, 66 c}$ M. R. An, ${ }^{32}$ Q. An ${ }^{63,49}$ X. H. Bai, ${ }^{57}$ Y. Bai, ${ }^{48}$ O. Bakina, ${ }^{29}$ R. Baldini Ferroli, ${ }^{23 a}$ I. Balossino, ${ }^{24 a}$ Y. Ban, ${ }^{38, k}$ K. Begzsuren, ${ }^{26}$ N. Berger, ${ }^{28}$ M. Bertani, ${ }^{23 a}$ D. Bettoni, ${ }^{24 a}$ F. Bianchi, ${ }^{66 a, 66 c}$ J. Bloms, ${ }^{60}$ A. Bortone, ${ }^{66 a, 66 c}$ I. Boyko, ${ }^{29}$ R. A. Briere, ${ }^{5}$ H. Cai, ${ }^{68}$ X. Cai, ${ }^{1,49}$ A. Calcaterra, ${ }^{23 a}$ G. F. Cao, ${ }^{1,54}$ N. Cao, ${ }^{1,54}$ S. A. Cetin, ${ }^{53 a}$ J. F. Chang ${ }^{1,49}$ W. L. Chang,${ }^{1,54}$ G. Chelkov, ${ }^{29, b}$ D. Y. Chen, ${ }^{6}$ G. Chen, ${ }^{1}$ H. S. Chen, ${ }^{1,54}$ M. L. Chen, ${ }^{1,49}$ S. J. Chen, ${ }^{35}$ X. R. Chen, ${ }^{25}$ Y. B. Chen, ${ }^{1,49}$ Z. J. Chen, ${ }^{20,1}$ W. S. Cheng, ${ }^{660}$ G. Cibinetto, ${ }^{24 \mathrm{a}}$ F. Cossio, ${ }^{6 c \mathrm{c}}$ X. F. Cui, ${ }^{36}$ H. L. Dai, ${ }^{1,49}$ X. C. Dai, ${ }^{1,54}$ A. Dbeyssi, ${ }^{15}$ R. E. de Boer, ${ }^{4}$ D. Dedovich, ${ }^{29}$ Z. Y. Deng, ${ }_{54}$ A. Denig, ${ }^{28}$ I. Denysenko, ${ }^{29}$ M. Destefanis, ${ }^{66 a, 66 c}$ F. De Mori, ${ }^{66 a, 66 c}$ Y. Ding, ${ }^{33}$ C. Dong, ${ }^{36}$ J. Dong ${ }^{1,49}$ L. Y. Dong ${ }^{1,54}$ M. Y. Dong, ${ }^{1,49,54}$ X. Dong ${ }^{68}$ S. X. Du, ${ }^{71}$ Y. L. Fan, ${ }^{68}$ J. Fang ${ }^{1,49}$ S. S. Fang, ${ }^{1,54}$ Y. Fang, ${ }^{1}$ R. Farinelli, ${ }^{24 a}$ L. Fava, ${ }^{66 b, 66 c}$ F. Feldbauer, ${ }^{4}$ G. Felici, ${ }^{23 a}$ C. Q. Feng, ${ }^{63,49}$ J. H. Feng, ${ }^{50}$ M. Fritsch, ${ }^{4}$ C. D. Fu, ${ }^{1}$ Y. Gao, ${ }^{63,49}$ Y. Gao, ${ }^{38, k}$ Y. Gao, ${ }^{64}$ Y. G. Gao, ${ }^{6}$ I. Garzia, ${ }^{24 a, 24 b}$ P. T. Ge, ${ }^{68}$ C. Geng, ${ }^{50}$ E. M. Gersabeck, ${ }^{58}$ A. Gilman, ${ }^{61}$ K. Goetzen, ${ }^{11}$ L. Gong, ${ }^{33}$ W. X. Gong, ${ }^{1,49}$ W. Gradl, ${ }^{28}$ M. Greco, ${ }^{60,66 c}$ L. M. Gu, ${ }^{35}$ M. H. Gu, ${ }^{1,49}$ S. Gu, ${ }^{2}$ Y. T. Gu, ${ }^{13}$ C. Y. Guan, ${ }^{1,54}$ A. Q. Guo, ${ }^{22}$ L. B. Guo,,34 R. P. Guo, ${ }^{40}$ Y. P. Guo, ${ }^{9, h}$ A. Guskov, ${ }^{29, b}$ T. T. Han, ${ }^{41}$ W. Y. Han, ${ }^{32}$ X. Q. Hao, ${ }^{16}$ F. A. Harris, ${ }^{56}$ N. Hüsken,${ }^{22,28}$ K. L. He, ${ }^{1,54}$ F. H. Heinsius, ${ }^{4}$ C. H. Heinz, ${ }^{28}$ T. Held, ${ }^{4}$ Y. K. Heng, ${ }^{1,49,54}$ C. Herold, ${ }^{51}$ M. Himmelreich ${ }^{11, f}$ T. Holtmann, ${ }^{4}$ G. Y. Hou, ${ }^{1,54}$ Y. R. Hou, ${ }^{54}$ Z. L. Hou, ${ }^{1}$ H. M. Hu, ${ }^{1,54}$ J. F. Hu, ${ }^{47, \mathrm{~m}}$ T. Hu, ${ }^{1,49,54}$ Y. Hu, ${ }^{1}$ G. S. Huang, ${ }^{63,49}$ L. Q. Huang, ${ }^{64}$ X. T. Huang, ${ }^{41}$ Y. P. Huang, ${ }^{1}$ Z. Huang, ${ }^{38, k}$, . Hussain, ${ }^{65}$ W. Ikegami Andersson, ${ }^{67}$ W. Imoehl, ${ }^{22}$ M. Irshad, ${ }^{63,49}$ S. Jaeger, ${ }^{4}$ S. Janchiv, ${ }^{26, j}$ Q. Ji, ${ }^{1}$ Q. P. Ji ${ }^{16}$ X. B. Ji, ${ }^{1,54}$ X. L. Ji, ${ }^{1,49}$ Y. Y. Ji, ${ }^{41}$ H. B. Jiang, ${ }^{41}$ X. S. Jiang, ${ }^{1,49,54}{ }^{1}$ J. B. Jiao, ${ }^{41}$ Z. Jiao, ${ }^{18}$ S. Jin, ${ }^{35}$ Y. Jin, ${ }^{57}$ M. Q. Jing, ${ }^{1,54}$ T. Johansson, ${ }^{67}$ N. Kalantar-Nayestanaki, ${ }^{55}$ X. S. Kang, ${ }^{33}$ R. Kappert,,${ }^{55}$ M. Kavatsyuk, ${ }^{55}$ B. C. Ke, ${ }^{43,1}$ I. K. Keshk, ${ }^{4}$ A. Khoukaz, ${ }^{60}$ P. Kiese, ${ }^{28}$ R. Kiuchi, ${ }^{1}$ R. Kliemt, ${ }^{11}$ L. Koch, ${ }^{30}$ O. B. Kolcu, ${ }^{53 \mathrm{a}, \mathrm{e}}$ B. Kopf, ${ }^{4}$ M. Kuemmel, ${ }^{4}$ M. Kuessner, ${ }^{4}$ A. Kupsc, ${ }^{67}$ M. G. Kurth, ${ }^{1,54}$ W. Kühn, ${ }^{30}$ J. J. Lane, ${ }^{58}$ J. S. Lange, ${ }^{30}$ P. Larin, ${ }^{15}$ A. Lavania, ${ }^{21}$ L. Lavezzi, ${ }^{66 a, 66 c}$ Z. H. Lei ${ }^{63,49}$ H. Leithoff, ${ }^{28}$ M. Lellmann, ${ }^{28}$ T. Lenz, ${ }^{28}$ C. Li, ${ }^{39}$ C. H. Li, ${ }^{32}$ Cheng Li, ${ }^{63,49}$ D. M. Li ${ }^{71}$
 P. R. Li, ${ }^{31, \mathrm{noo}}$ S. Y. Li, ${ }^{52}$ W. D. Li, ${ }^{1,54}$ W. G. Li, ${ }^{1}$ X. H. Li ${ }^{63,49}$ X. L. Li, ${ }^{41}$ Xiaoyu Li ${ }^{1,54}$ Z. Y. Li ${ }^{50}{ }^{50}$ H. Liang, ${ }^{1,54}$ H. Liang,${ }^{63,49}$ H. Liang, ${ }^{27}$ Y. F. Liang, ${ }^{45}$ Y. T. Liang, ${ }^{25}$ G. R. Liao, ${ }^{12}$ L. Z. Liao ${ }^{1,54}$ J. Libby, ${ }^{21}$ C. X. Lin, ${ }^{50}$ B. J. Liu, ${ }^{1}$ C. X. Liu, ${ }^{1}$ D. Liu,,${ }^{15,63}$ F. H. Liu, ${ }^{44}$ Fang Liu, ${ }^{1}$ Feng Liu, ${ }^{6}$ H. B. Liu, ${ }^{13}$ H. M. Liu, ${ }^{1,54}$ Huanhuan Liu, ${ }^{1}$ Huihui Liu, ${ }^{17}$ J. B. Liu, ${ }^{63,49}$ J. L. Liu, ${ }^{64}$ J. Y. Liu, ${ }^{1,54}$ K.Liu, ${ }^{1}$ K. Y. Liu, ${ }^{33}$ L. Liu, ${ }^{33,49}$ M. H. Liu ${ }^{9, h}$ P. L. Liu, ${ }^{1}$ Q. Liu, ${ }^{54}$ Q. Liu, ${ }^{68}$ S. B. Liu, ${ }^{63,49}$ Shuai Liu, ${ }^{46}$ T. Liu, ${ }^{1,54}$ W. M. Liu, ${ }^{63,49}$ X. Liu, ${ }^{31, \mathrm{n}, \mathrm{o}}$ Y. Liu, ${ }^{31, \mathrm{n}, \mathrm{o}}$ Y. B. Liu, ${ }^{36}$ Z. A. Liu, ${ }^{1,49,54}$ Z. Q. Liu, ${ }^{41}$ X. C. Lou, ${ }^{1,49,54}{ }^{5}$ F. X. Lu, ${ }^{50}$ H. J. Lu, ${ }^{18}$ J. D. Lu, ${ }^{1,54}$ J. G. Lu, ${ }^{1,49}$ X. L. Lu, ${ }^{1}$ Y. Lu, ${ }^{1}$ Y.P. Lu, ${ }^{1,49}$ C. L. Luo, ${ }^{34}$ M. X. Luo, ${ }^{70}$ P. W. Luo, ${ }^{50}$ T. Luo, ${ }^{9, \mathrm{~h}}$ X. L. Luo, ${ }^{1,49}$ X. R. Lyu, ${ }^{54}$ F. C. Ma, ${ }^{33}$ H. L. Ma, ${ }^{1}$ L. L. Ma, ${ }^{41}$ M. M. Ma, ${ }^{1,54}$ Q. M. Ma, ${ }^{1}$ R. Q. Ma,${ }^{1,54}$ R. T. Ma, ${ }^{54}$ X. X. Ma, ${ }^{1,54}$ X. Y. Ma ${ }^{1,49}$ F. E. Maas, ${ }^{15}$ M. Maggiora, ${ }^{66,66 c}{ }^{6}$ S. Maldaner, ${ }^{4}$ S. Malde, ${ }^{61}$ Q. A. Malik, ${ }^{65}$ A. Mangoni, ${ }^{236}$ Y. J. Mao, ${ }^{38, k}$ Z. P. Mao, ${ }^{1}$ S. Marcello, ${ }^{66 a, 66 c}$ Z. X. Meng, ${ }^{57}$ J. G. Messchendorp, ${ }^{55}$ G. Mezzadri, ${ }^{24 a}$ T. J. Min, ${ }^{35}$ R. E. Mitchell, ${ }^{22}$ X. H. Mo ${ }^{1,49,54}$ Y. J. Mo, ${ }^{6}$ N. Yu. Muchnoi, ${ }^{10, \mathrm{c}}$ H. Muramatsu, ${ }^{59}$ S. Nakhoul, ${ }^{11, f}$ Y. Nefedov, ${ }^{29}$ F. Nerling, ${ }^{11, f}$ I. B. Nikolaev ${ }^{10, \mathrm{c}}$ Z. Ning ${ }^{1,49}$ S. Nisar, ${ }^{8, \mathrm{i}}$ S. L. Olsen, ${ }^{54}$ Q. Ouyang, ${ }^{1,49,54}$ S. Pacetti, ${ }^{23 b, 23 c}$ X. Pan, ${ }^{9, \mathrm{~h}}$ Y. Pan, ${ }^{58}$ A. Pathak, ${ }^{1}$ P. Patteri, ${ }^{233}$ M. Pelizaeus, ${ }^{4}$ H. P. Peng, ${ }^{63,49}$ K. Peters, ${ }^{11, f}$ J. Pettersson, ${ }^{67}$ J. L. Ping, ${ }^{34}$ R. G. Ping, ${ }^{1,54}$ R. Poling, ${ }^{59}$ V. Prasad,${ }^{63,49}$ H. Qi ${ }^{63,49}$ H. R. Qi ${ }^{52}$ K. H. Qi, ${ }^{25}$ M. Qi, ${ }^{35}$ T. Y. Qi, ${ }^{9}$ S. Qian, ${ }^{1,49}$ W. B. Qian, ${ }^{54}$ Z. Qian ${ }^{50}$ C.F. Qiao, ${ }^{54}$ L. Q. Qin, ${ }^{12}$ X. P. Qin, ${ }^{9}$ X. S. Qin, ${ }^{41}$ Z. H. Qin,,${ }^{1,49}$ J. F. Qiu, ${ }^{1}$ S. Q. Qu, ${ }^{36}$ K. H. Rashid, ${ }^{65}{ }^{5}$ K. Ravindran ${ }^{21}$ C. F. Redmer, ${ }^{28}$ A. Rivetti, ${ }^{66 \mathrm{c}}$ V. Rodin, ${ }^{55}$ M. Rolo ${ }^{66 \mathrm{c}} \mathrm{G}$. Rong, ${ }^{1,54} \mathrm{Ch}$. Rosner, ${ }^{15}$ M. Rump, ${ }^{60}$ H. S. Sang, ${ }^{63}$ A. Sarantsev, ${ }^{29, \mathrm{~d}}$ Y. Schelhaas, ${ }^{28}$ C. Schnier, ${ }^{4}$ K. Schoenning, ${ }^{67}$ M. Scodeggio, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ D. C. Shan, ${ }^{46}$ W. Shan, ${ }^{19}$ X. Y. Shan, ${ }^{63,49}$ J. F. Shangguan, ${ }^{46}$ M. Shao, ${ }^{63,49}$ C. P. Shen, ${ }^{9}$ H. F. Shen, ${ }^{1,54}$ P. X. Shen, ${ }^{36}$ X. Y. Shen, ${ }^{1,54}$ H. C. Shi, ${ }^{63,49}$ R. S. Shi, ${ }^{1,54}$ X. Shi, ${ }^{1,49}$ X. D. Shi, ${ }^{63,49}$ J. J. Song, ${ }^{41}$ W. M. Song, ${ }^{27,1}$ Y. X. Song, ${ }^{38, \mathrm{k}}$ S. Sosio, ${ }^{66,66 c}$ S. Spataro, ${ }^{66 a, 66 c}$ K. X. Su, ${ }^{68}$ P. P. Su, ${ }^{46}$ F. F. Sui, ${ }^{41}$ G. X. Sun, ${ }^{1}$ H. K. Sun, ${ }^{1}$ J. F. Sun, ${ }^{16}$ L. Sun, ${ }^{68}$ S. S. Sun, ${ }^{1,54}$ T. Sun, ${ }^{1,54}$ W. Y. Sun, ${ }^{27}$ W. Y. Sun, ${ }^{34}$ X. Sun, ${ }^{20,1}$ Y. J. Sun,,${ }^{63,49}$ Y. K. Sun, ${ }^{63,49}$ Y. Z. Sun, ${ }^{1}$ Z. T. Sun, ${ }^{1}$ Y. H. Tan ${ }^{68}{ }^{68}$ Y. X. Tan, ${ }^{63,49}$ C. J. Tang, ${ }^{45}{ }^{5}$ G. Y. Tang, ${ }^{1}{ }^{1}$ J. Tang, ${ }^{50}$ J. X. Teng ${ }^{63,49}$ V. Thoren, ${ }^{67}$ W. H. Tian, ${ }^{43}$ Y. T. Tian, ${ }^{25}$ I. Uman, ${ }^{53 b}$ B. Wang, ${ }^{1}$ C. W. Wang, ${ }^{35}$ D. Y. Wang, ${ }^{38, k}$ H. J. Wang, ${ }^{31, n, 0}$ H. P. Wang, ${ }^{1,54}$ K. Wang, ${ }^{1,49}$ L. L. Wang, ${ }_{3}^{1}$ M. Wang, ${ }^{41}$ M. Z. Wang,,${ }^{38, k}$ Meng Wang, ${ }^{1,54}$ W. Wang, ${ }^{50}$ W. H. Wang ${ }^{68}$, W. P. Wang, ${ }^{63,49}$ X. Wang, ${ }^{38, k}$ X. F. Wang, ${ }^{31, \mathrm{n}, \mathrm{o}}$ X. L. Wang, ${ }^{9, \mathrm{~h}}$ Y. Wang, ${ }^{50}$ Y. Wang, ${ }^{63,49}$ Y. D. Wang, ${ }^{37}$ Y. F. Wang, ${ }^{1,49,54}$ Y. Q. Wang, ${ }^{1}$ Y. Y. Wang, ${ }^{31, \text { n, }}$ Z. Wang, ${ }^{1,49}$ Z. Y. Wang, ${ }^{1}$ Ziyi Wang,${ }^{54}$ Zongyuan Wang, ${ }^{1,54}$ D. H. Wei, ${ }^{12}$ F. Weidner, ${ }^{60}$ S. P. Wen, ${ }^{1}$ D. J. White, ${ }^{58}$ U. Wiedner, ${ }^{4}$ G. Wilkinson, ${ }^{61}$ M. Wolke, ${ }^{67}$ L. Wollenberg, ${ }^{4}$ J. F. Wu, ${ }^{1,54}$ L. H. Wu, ${ }^{1}$ L. J. Wu, ${ }^{1,54}$ X. Wu, ${ }^{9, h}$ Z. Wu, ${ }^{1,49}$ L. Xia, ${ }^{63,49}$ H. Xiao, ${ }^{9, \mathrm{~h}}$ S. Y. Xiao, ${ }^{1}$ Z. J. Xiao, ${ }^{34}$ X. H. Xie, ${ }^{38, k}$ Y. G. Xie, ${ }^{1,49}$ Y. H. Xie, ${ }^{6}$ T. Y. Xing, ${ }^{1,54}$ G. F. Xu, ${ }^{1}$ Q. J. Xu, ${ }^{14}$ W. Xu, ${ }^{1,54}$ X. P. Xu, ${ }^{46}$ Y. C. Xu, ${ }^{54}$ F. Yan, ${ }^{9, h}$ L. Yan, ${ }^{9, h}$ W. B. Yan ${ }^{63,49}$ W. C. Yan, ${ }^{71}$ Xu Yan, ${ }^{46}$ H. J. Yang, ${ }^{42, g}$ H. X. Yang, ${ }^{1}$ L. Yang, ${ }^{43}$ S. L. Yang,,${ }^{54}$ Y. X. Yang, ${ }^{12}$ Yifan Yang, ${ }^{1,54}$ Zhi Yang, ${ }^{25}$ M. Ye, ${ }^{1,49}$ M. H. Ye, J. H. Yin, ${ }^{1}$ Z. Y. You, ${ }^{50}$ B. X. Yu, ${ }^{\text {P, } 4,54}{ }^{1}$ C. X. Yu, ${ }^{36}$ G. Yu, ${ }^{1,54}$ J. S. Yu, ${ }^{20,1}$ T. Yu, ${ }^{64}$ C. Z. Yuan, ${ }^{1,54}$ L. Yuan, ${ }^{2}$ X. Q. Yuan, ${ }^{38, k}$ Y. Yuan, ${ }^{1}$ Z. Y. Yuan, ${ }^{50}$
C. X. Yue, ${ }^{32}$ A. Yuncu, ${ }^{53 a, a}$ A. A. Zafar, ${ }^{65}$ X. Zeng, ${ }^{6}$ Y. Zeng, ${ }^{20,1}$ A. Q. Zhang, ${ }^{1}$ B. X. Zhang, ${ }^{1}$ Guangyi Zhang, ${ }^{16}$ H. Zhang, ${ }^{63}$ H. H. Zhang, ${ }^{27}$ H. H. Zhang, ${ }^{50}$ H. Y. Zhang, ${ }^{1,49}$ J. J. Zhang, ${ }^{43}$ J. L. Zhang, ${ }^{69}$ J. Q. Zhang, ${ }^{34}$ J. W. Zhang, ${ }^{1,49,54}$ J. Y. Zhang, ${ }^{1}$ J. Z. Zhang, ${ }^{1,54}$ Jianyu Zhang, ${ }^{1,54}$ Jiawei Zhang, ${ }^{1,54}$ L. M. Zhang, ${ }^{52}$ L. Q. Zhang, ${ }^{50}$ Lei Zhang, ${ }^{35}$ S. Zhang, ${ }^{50}$ S. F. Zhang, ${ }^{35}$ Shulei Zhang, ${ }^{20,1}$ X. D. Zhang, ${ }^{37}$ X. Y. Zhang, ${ }^{41}$ Y. Zhang, ${ }^{61}$ Y. H. Zhang, ${ }^{1,49}$ Y. T. Zhang, ${ }^{63,49}$, Yan Zhang, ${ }^{63,49}$ Yao Zhang, ${ }^{1}$ Yi Zhang, ${ }^{9, h}$ Z. H. Zhang, ${ }^{6}$ Z. Y. Zhang, ${ }^{68}$ G. Zhao, ${ }^{1}$ J. Zhao, ${ }^{32}$ J. Y. Zhao, ${ }^{1,54}$ J. Z. Zhao, ${ }^{1,49}$ Lei Zhao, ${ }^{63,49}$ Ling Zhao, ${ }^{1}$ M. G. Zhao $\odot,{ }^{36}$ Q. Zhao, ${ }^{1}$ S. J. Zhao, ${ }^{71}$ Y. B. Zhao, ${ }^{1,49}$ Y. X. Zhao, ${ }^{25}$ Z. G. Zhao, ${ }^{63,49}$ A. Zhemchugov, ${ }^{29, b}$ B. Zheng, ${ }^{64}$ J. P. Zheng, ${ }^{1,49}$ Y. Zheng, ${ }^{38, k}$ Y. H. Zheng, ${ }^{54}$ B. Zhong, ${ }^{34}$ C. Zhong, ${ }^{64}$ L. P. Zhou, ${ }^{1,54}$ Q. Zhou, ${ }^{1,54}$ X. Zhou, ${ }^{68}$ X. K. Zhou, ${ }^{54}$ X. R. Zhou, ${ }^{63,49}$ X. Y. Zhou, ${ }^{32}$ A. N. Zhu, ${ }^{1,54}$ J. Zhu, ${ }^{36}$ K. Zhu, ${ }^{1}$ K. J. Zhu, ${ }^{1,49,54}$ S. H. Zhu, ${ }^{62}$ T. J. Zhu, ${ }^{69}$ W. J. Zhu, ${ }^{9, h}$ W. J. Zhu, ${ }^{36}$ Y. C. Zhu, ${ }^{63,49}$ Z. A. Zhu, ${ }^{1,54}$ B. S. Zou, ${ }^{1}$ and J. H. Zou ${ }^{1}$

(BESIII Collaboration)

${ }^{1}$ Institute of High Energy Physics, Beijing 100049, People's Republic of China
${ }^{2}$ Beihang University, Beijing 100191, People's Republic of China
${ }^{3}$ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
${ }^{4}$ Bochum Ruhr-University, D-44780 Bochum, Germany
${ }^{5}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{6}$ Central China Normal University, Wuhan 430079, People's Republic of China
${ }^{7}$ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China
${ }^{8}$ COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
${ }^{9}$ Fudan University, Shanghai 200443, People's Republic of China
${ }^{10}$ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
${ }^{11}$ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
${ }^{12}$ Guangxi Normal University, Guilin 541004, People's Republic of China
${ }^{13}$ Guangxi University, Nanning 530004, People's Republic of China
${ }^{14}$ Hangzhou Normal University, Hangzhou 310036, People's Republic of China
${ }^{15}$ Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
${ }^{16}$ Henan Normal University, Xinxiang 453007, People's Republic of China
${ }^{17}$ Henan University of Science and Technology, Luoyang 471003, People's Republic of China
${ }^{18}$ Huangshan College, Huangshan 245000, People's Republic of China
${ }^{19}$ Hunan Normal University, Changsha 410081, People's Republic of China
${ }^{20}$ Hunan University, Changsha 410082, People's Republic of China
${ }^{21}$ Indian Institute of Technology Madras, Chennai 600036, India
${ }^{22}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{23 a}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
${ }^{23 \mathrm{~b}}$ INFN Sezione di Perugia, I-06100 Perugia, Italy
${ }^{23 \mathrm{c}}$ University of Perugia, I-06100 Perugia, Italy
${ }^{24 a}$ INFN Sezione di Ferrara, I-44122 Ferrara, Italy
${ }^{24 b}$ University of Ferrara, I-44122 Ferrara, Italy
${ }^{25}$ Institute of Modern Physics, Lanzhou 730000, People's Republic of China
${ }^{26}$ Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
${ }^{27}$ Jilin University, Changchun 130012, People's Republic of China
${ }^{28}$ Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
${ }^{29}$ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
${ }^{30}$ Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
${ }^{31}$ Lanzhou University, Lanzhou 730000, People's Republic of China
${ }^{32}$ Liaoning Normal University, Dalian 116029, People's Republic of China
${ }^{33}$ Liaoning University, Shenyang 110036, People's Republic of China
${ }^{34}$ Nanjing Normal University, Nanjing 210023, People's Republic of China
${ }^{35}$ Nanjing University, Nanjing 210093, People's Republic of China
${ }^{36}$ Nankai University, Tianjin 300071, People's Republic of China
${ }^{37}$ North China Electric Power University, Beijing 102206, People's Republic of China
${ }^{38}$ Peking University, Beijing 100871, People's Republic of China
${ }^{39}$ Qufu Normal University, Qufu 273165, People's Republic of China
${ }^{40}$ Shandong Normal University, Jinan 250014, People's Republic of China
${ }^{41}$ Shandong University, Jinan 250100, People's Republic of China
${ }^{42}$ Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

${ }^{43}$ Shanxi Normal University, Linfen 041004, People's Republic of China
${ }^{44}$ Shanxi University, Taiyuan 030006, People's Republic of China
${ }^{45}$ Sichuan University, Chengdu 610064, People's Republic of China
${ }^{46}$ Soochow University, Suzhou 215006, People's Republic of China
${ }^{47}$ South China Normal University, Guangzhou 510006, People's Republic of China
${ }^{48}$ Southeast University, Nanjing 211100, People's Republic of China
${ }^{49}$ State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China
${ }^{50}$ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
${ }^{51}$ Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
${ }^{52}$ Tsinghua University, Beijing 100084, People's Republic of China
${ }^{53 a}$ Turkish Accelerator Center Particle Factory Group, Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
${ }^{53 \mathrm{~b}}$ Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
${ }^{54}$ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
${ }^{55}$ University of Groningen, NL-9747 AA Groningen, Netherlands
${ }^{56}$ University of Hawaii, Honolulu, Hawaii 96822, USA
${ }^{57}$ University of Jinan, Jinan 250022, People's Republic of China
${ }^{58}$ University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
${ }^{59}$ University of Minnesota, Minneapolis, Minnesota 55455, USA
${ }^{60}$ University of Muenster, Wilhelm-Klemm-Straße 9, 48149 Muenster, Germany
${ }^{61}$ University of Oxford, Keble Rd, Oxford OX13RH, United Kingdom
${ }^{62}$ University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
${ }^{63}$ University of Science and Technology of China, Hefei 230026, People's Republic of China
${ }^{64}$ University of South China, Hengyang 421001, People's Republic of China
${ }^{65}$ University of the Punjab, Lahore-54590, Pakistan
${ }^{66 a}$ University of Turin and INFN, University of Turin, I-10125 Turin, Italy
${ }^{66 \mathrm{~b}}$ University of Eastern Piedmont, I-15121 Alessandria, Italy
${ }^{66 c}$ INFN, I-10125 Turin, Italy
${ }^{67}$ Uppsala University, Box 516, SE-75120 Uppsala, Sweden
${ }^{68}$ Wuhan University, Wuhan 430072, People's Republic of China
${ }^{69}$ Xinyang Normal University, Xinyang 464000, People's Republic of China
${ }^{70}$ Zhejiang University, Hangzhou 310027, People's Republic of China
${ }^{71}$ Zhengzhou University, Zhengzhou 450001, People's Republic of China

(Received 28 February 2022; accepted 26 April 2022; published 20 May 2022)
We report the first measurements of the absolute branching fractions of $D^{0} \rightarrow K_{L}^{0} \phi, D^{0} \rightarrow K_{L}^{0} \eta$, $D^{0} \rightarrow K_{L}^{0} \omega$, and $D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$, by analyzing $2.93 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$collision data taken at a

[^0]center-of-mass energy of 3.773 GeV with the BESIII detector. Taking the world averages of the branching fractions of $D^{0} \rightarrow K_{S}^{0} \phi, D^{0} \rightarrow K_{S}^{0} \eta, D^{0} \rightarrow K_{S}^{0} \omega$, and $D^{0} \rightarrow K_{S}^{0} \eta^{\prime}$, the $K_{S}^{0}-K_{L}^{0}$ asymmetries $\mathcal{R}\left(D^{0}, X\right)$ in these decay modes are obtained. The $C P$ asymmetries in these decays are also determined. No significant $C P$ violation is observed.

DOI: 10.1103/PhysRevD.105.092010

Hadronic decays of charmed mesons offer an ideal test bed to investigate strong and weak interactions. Remarkable progress in studies of hadronic D decays involving $K^{ \pm}$and K_{S}^{0} has been achieved to date. However, experimental knowledge of hadronic D decays involving a K_{L}^{0} is still very poor [1] mainly due to the difficulty in K_{L}^{0} reconstruction. It is often assumed (or taken as a good approximation) that the branching fractions (BFs) of D decays into hadronic final states containing K_{L}^{0} meson(s) are equal to those for the corresponding final states with K_{S}^{0} meson(s). However, as clarified in Refs. [2-7], the interference between Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) amplitudes can lead to a significant asymmetry between the BFs of $D^{0} \rightarrow K_{S}^{0} X$ and $D^{0} \rightarrow K_{L}^{0} X\left(X=\pi^{0}, \eta, \eta^{\prime}, \omega, \rho^{0}\right.$, and $\left.\phi\right)$,

$$
\begin{align*}
\mathcal{R}\left(D^{0}, X\right) & =\frac{\mathcal{B}\left(D^{0} \rightarrow K_{S}^{0} X\right)-\mathcal{B}\left(D^{0} \rightarrow K_{L}^{0} X\right)}{\mathcal{B}\left(D^{0} \rightarrow K_{S}^{0} X\right)+\mathcal{B}\left(D^{0} \rightarrow K_{L}^{0} X\right)} \\
& =-2 r \cos \delta+y_{D}, \tag{1}
\end{align*}
$$

where r and δ are the relative strength and phase between the DCS and CF amplitudes, respectively, and y_{D} is the $D^{0}-\bar{D}^{0}$ mixing parameter [8]. One has $\mathcal{R}\left(D^{0}, P\right)=$ $2 \tan ^{2} \theta_{C}\left(+y_{D}\right)=0.113 \pm 0.001$ for $P=\pi^{0}, \eta$, or η^{\prime} naively [2-6], where θ_{C} is the Cabibbo mixing angle [9]. Using the factorization-assisted topological (FAT) amplitude approach and assuming $E_{P}=E_{V}$, Ref. [6] stated that the $\mathcal{R}\left(D^{0}, V\right)$ for $V=\rho, \omega$, or ϕ can also be simplified as $2 \tan ^{2} \theta_{C}+y_{D}=0.113 \pm 0.001$, where E_{P} and E_{V} are the W-exchange amplitudes for $D \rightarrow P P$ and $D \rightarrow V P$ decays, respectively. Here, P and V denote pseudoscalar and vector mesons, respectively. It is independent of X because the ratio of DCS and CF amplitudes only depends on the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. The large asymmetry for $\mathcal{R}\left(D^{0}, \pi^{0}\right)$ has been confirmed by a previous measurement of the CLEO experiment [10]. Measurements of the BFs of $D^{0} \rightarrow K_{L}^{0} \phi$, $D^{0} \rightarrow K_{L}^{0} \eta, D^{0} \rightarrow K_{L}^{0} \omega$, and $D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$ are crucial to test theoretical calculations and help understand the CKM mechanism. Study of the $K_{S}^{0}-K_{L}^{0}$ asymmetry, $\mathcal{R}(D, X)$ is also important to improve the understanding of quark U-spin [11,12] and $S U(3)$-flavor symmetry breaking effects and can benefit theoretical predictions of $C P$ violation in D decays [13-21]. These decays are all
$C P+$ eigenstates and can be used to extract the strong phase differences of neutral D decays [22,23].

Studies of $C P$ violation of the weak decays of D mesons are important for exploring physics within and beyond the Standard Model. The size of $C P$ violation in various D decays is predicted to be in the order of 10^{-3} [19,24-29]. In 2019, LHCb reported the first observation of $C P$ violation in neutral D decays [30]. Currently, the knowledge of $C P$ violation in the charm sector is still limited and further measurements are highly desirable.

This paper reports the first measurements of the BFs of $D^{0} \rightarrow K_{L}^{0} \phi, D^{0} \rightarrow K_{L}^{0} \eta, D^{0} \rightarrow K_{L}^{0} \omega$, and $D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$ as well as the BF asymmetries between $D^{0} \rightarrow K_{S}^{0} X$ and $D^{0} \rightarrow K_{L}^{0} X$. In addition, the $C P$ asymmetries in these decays are also determined. Throughout this paper, charge conjugate channels are implied, unless noted otherwise.

This analysis is performed with a $2.93 \mathrm{fb}^{-1}$ [31] sample of $e^{+} e^{-}$annihilation data taken at a center-of-mass energy $\sqrt{s}=3.773 \mathrm{GeV}$ with the BESIII detector. Details about the design and performance of the BESIII detector are given in Ref. [32]. Simulated samples, produced with the geantu-based [33] Monte Carlo (MC) package including the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate background contributions. The simulation includes the beam-energy spread and initialstate radiation in the $e^{+} e^{-}$annihilations modeled with the generator KKMC [34]. An inclusive MC sample, containing the production of $D \bar{D}$ pairs, the non $D \bar{D}$ decays of the $\psi(3770)$, the initial-state radiation production of the J / ψ and $\psi(3686)$ states, and the continuum processes, is used in this analysis. Known decay modes are modeled with evtgen [35] using the BFs taken from the Particle Data Group (PDG) [1] and the remaining unknown decays from the charmonium states are modeled with LundCharm [36]. Final state radiation from charged final-state particles is incorporated using рнотоs [37].

At $\sqrt{s}=3.773 \mathrm{GeV}, D^{0}$ and \bar{D}^{0} mesons are produced in pairs without accompanying hadrons, and hence the environment is ideal to investigate D^{0} decays with the doubletag (DT) method [38]. In this method, the \bar{D}^{0} meson, later referred as single-tag (ST), is first reconstructed through the hadronic decays $\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}$, and $K^{+} \pi^{-} \pi^{-} \pi^{+}$, which have large BFs and small background contamination. If a signal $D^{0} \rightarrow K_{L}^{0} \phi, K_{L}^{0} \eta, K_{L}^{0} \omega$, or $K_{L}^{0} \eta^{\prime}$ decay can be reconstructed in the rest of the event, the event is then
considered as a DT event. The BF of the signal decay is determined by

$$
\begin{equation*}
\mathcal{B}_{\mathrm{sig}}=N_{\mathrm{DT}} /\left(N_{\mathrm{ST}}^{\mathrm{tot}} \cdot \epsilon_{\mathrm{sig}}\right) \tag{2}
\end{equation*}
$$

where $N_{\mathrm{ST}}^{\mathrm{tot}}$ and N_{DT} are the yields of the total ST and DT candidates in data, respectively, and $\epsilon_{\mathrm{sig}}=\Sigma_{i}\left[\left(\epsilon_{\mathrm{DT}}^{i} \cdot N_{\mathrm{ST}}^{i}\right) /\right.$ $\left.\left(\epsilon_{\mathrm{ST}}^{i} \cdot N_{\mathrm{ST}}^{\mathrm{tot}}\right)\right]$ is the effective signal efficiency of finding the signal decay in the presence of the ST \bar{D}^{0} meson, where ϵ_{ST} and ϵ_{DT} are the detection efficiencies of the ST and DT candidates, respectively, and the index i runs over all ST modes.

In the work described in this paper, candidates for $K^{ \pm}$, $\pi^{ \pm}, \gamma$, and π^{0} are selected by using the same selection criteria as in Ref. [39]. The two-body ST mode $\bar{D}^{0} \rightarrow$ $K^{+} \pi^{-}$suffers from background contributions from cosmic rays and Bhabha scattering events. These background contributions are rejected by using the same requirements as in Ref. [40]. For the $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{-} \pi^{+}$ST mode, the $\bar{D}^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$ decays are rejected if the mass of any $\pi^{+} \pi^{-}$ pair falls within $(0.483,0.513) \mathrm{GeV} / c^{2}$.

Two kinematic variables, the energy difference $\Delta E \equiv$ $E_{\bar{D}^{0}}-E_{\text {beam }}$ and the beam-constrained mass $M_{\mathrm{BC}} \equiv$ $\sqrt{E_{\text {beam }}^{2} / c^{4}-\left|\vec{p}_{\bar{D}^{0}}\right|^{2} / c^{2}}$ are used to separate the $\operatorname{ST} \bar{D}^{0}$ mesons from combinatorial backgrounds. Here, $E_{\text {beam }}$ is the beam energy and $E_{\bar{D}^{0}}$ and $\vec{p}_{\bar{D}^{0}}$ denote the total energy and momentum of the ST \bar{D}^{0} candidate in the $e^{+} e^{-}$center-of-mass frame, respectively. If there are multiple combinations in an event, only the combination with the smallest $|\Delta E|$ is accepted. To suppress combinatorial backgrounds, the ΔE of any ST candidate is required to be within $(-0.055,0.040) \mathrm{GeV}$ for $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ and within $(-0.025,0.025) \mathrm{GeV}$ for $\bar{D}^{0} \rightarrow K^{+} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{-} \pi^{+}$.

The M_{BC} distributions of the accepted ST \bar{D}^{0} candidates are shown in Fig. 1. To extract the yield of ST \bar{D}^{0} mesons for each ST mode, a binned maximum-likelihood fit is
performed on the corresponding M_{BC} distribution. The signal is modeled by the MC-simulated shape convolved with a double-Gaussian function to take into account the resolution difference between data and MC simulation. In the fits, the Gaussian means and widths are free parameters whose ranges are $(0.04,0.20) \mathrm{MeV} / c^{2}$ and $(0.73,3.19) \mathrm{MeV} / c^{2}$, respectively. The combinatorial background is described by the ARGUS function [41]. The associated fit results are shown in Fig. 1. The candidates with $M_{\mathrm{BC}} \in(1.859,1.873) \mathrm{GeV} / c^{2}$ are kept for further analyses. Integrating the fitted signal shape in the aforementioned M_{BC} interval gives the yield of the ST \bar{D}^{0} mesons for each ST mode. Summing over all ST modes, the total yield of ST \bar{D}^{0} mesons is obtained to be $N_{\mathrm{ST}}^{\mathrm{tot}}=2266311 \pm 1842$.

The $D^{0} \rightarrow K_{L}^{0} X$ candidates are reconstructed with charged and photon candidates which have not been used in the ST side. Candidates for ϕ and ω are reconstructed from $K^{+} K^{-}$and $\pi^{+} \pi^{-} \pi^{0}$ combinations with $M_{K^{+} K^{-}} \in(1.005,1.035) \mathrm{GeV} / c^{2}$ and $M_{\pi^{+} \pi^{-} \pi^{0}} \in(0.752$, $0.812) \mathrm{GeV} / c^{2}$, respectively. Candidates for η are reconstructed from $\gamma \gamma$ pairs with $M_{\gamma \gamma} \in(0.510,0.570) \mathrm{GeV} / c^{2}$ or $\pi^{+} \pi^{-} \pi^{0} \quad$ combinations with $\quad M_{\pi^{+} \pi^{-} \pi^{0}} \in(0.535$, $0.560) \mathrm{GeV} / c^{2}$. Candidates for η^{\prime} are reconstructed from $\pi^{+} \pi^{-} \eta(\eta \rightarrow \gamma \gamma) \quad$ combinations with $M_{\pi^{+} \pi^{-} \eta} \in$ $(0.945,0.970) \mathrm{GeV} / c^{2}$ or $\gamma \rho^{0}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right)$combinations with $M_{\gamma \rho^{0}} \in(0.938,0.978) \mathrm{GeV} / c^{2}$. To improve resolution of $\eta \rightarrow \gamma \gamma$, a mass constrained (1C) fit is performed, constraining the selected $\gamma \gamma$ pair invariant mass to the known η mass [1]. If there are multiple combinations of π^{0} or $\eta_{\gamma \gamma}$, the one with the least $\chi_{1 \mathrm{C}}^{2}$ is kept for further analyses. For $\eta^{\prime} \rightarrow \gamma \rho^{0}\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}\right)$, the $\pi^{+} \pi^{-}$system is required to satisfy $M_{\pi^{+} \pi^{-}} \in(0.57,0.97) \mathrm{GeV} / c^{2}$. For $D^{0} \rightarrow K_{L}^{0} \eta_{\gamma \rho^{0}}^{\prime}$, the background events from $D^{0} \rightarrow K_{L}^{0} \pi^{+} \pi^{-}$are suppressed by requiring that the recoil mass of the $\pi^{+} \pi^{-}$pair from the signal combined with the ST particles is greater than

FIG. 1. Fits to the M_{BC} distributions of the $\mathrm{ST} \bar{D}^{0}$ candidates. Data are shown as dots (error bars are not visible at this scale). The blue solid and red dashed curves are the total fit results and the fitted backgrounds, respectively. Pairs of red arrows show the M_{BC} signal region.
$0.53 \mathrm{GeV} / c^{2}$. This requirement suppresses 90% of background events from $D^{0} \rightarrow K_{L}^{0} \pi^{+} \pi^{-}$at the cost of losing 0.5% of the signal. If there are multiple $\gamma \rho^{0}$ combinations for $D^{0} \rightarrow K_{L}^{0} \eta_{\gamma \rho^{0}}^{\prime}$, the one with $M_{\gamma \rho^{0}}$ closest to the known η^{\prime} mass [1] is kept for further analyses. Throughout this paper, the subscripts of ϕ, η, ω, and η^{\prime} denote the corresponding reconstruction modes.

To minimize the impact of a K_{L}^{0} shower in electromagnetic calorimeter on extra π^{0} and η vetoes, the opening angle between any remaining photon and the missing momentum is required to be greater than 15°. Events with extra charged tracks, π^{0} or $\eta_{\gamma \gamma}$ are rejected to suppress background contributions from $D^{0} \rightarrow K_{S}^{0}\left(\rightarrow \pi^{+} \pi^{-}\right) X$, $D^{0} \rightarrow K_{S}^{0}\left(\rightarrow \pi^{0} \pi^{0}\right) X$ and $D^{0} \rightarrow \eta_{\gamma \gamma} X$, respectively.

To separate signal events from background contributions, the variable $\mathrm{MM}^{2}=E_{\text {miss }}^{2} / c^{4}-\left|\vec{p}_{\text {miss }}\right|^{2} / c^{2} \quad$ is defined, where $E_{\text {miss }}$ and $\vec{p}_{\text {miss }}$ are the missing energy and momentum of the DT event in the $e^{+} e^{-}$center-of-mass frame, respectively. They are calculated as $E_{\text {miss }} \equiv E_{D^{0}}-$ E_{X} and $\vec{p}_{\text {miss }} \equiv \vec{p}_{D^{0}}-\vec{p}_{X}$, where $E_{D^{0}}, \vec{p}_{D^{0}}, E_{X}$, and \vec{p}_{X} are the measured energy and momentum of the D^{0} and X candidates, respectively. The MM^{2} resolution is improved by constraining the energy of D^{0} to the beam energy and $\vec{p}_{D^{0}} \equiv-\hat{p}_{\bar{D}^{0}} \cdot \sqrt{E_{\text {beam }}^{2} / c^{4}-m_{\bar{D}^{0}}^{2}}$, where $\hat{p}_{\bar{D}^{0}}$ is the unit vector in the momentum direction of the ST \bar{D}^{0} meson and $m_{\bar{D}^{0}}$ is the known \bar{D}^{0} mass [1].

The signal yields ($N_{\text {sig }}$) are extracted by fitting the MM^{2} distributions of selected events. Background events are divided into four categories. The first (BKGI) contains
$D^{0} \rightarrow K_{S}^{0}\left(\rightarrow \pi^{0} \pi^{0}\right) X$ events. The second (BKGII) contains $D^{0} \rightarrow \eta_{\gamma \gamma} \phi, \eta_{\gamma \gamma} \eta, \eta_{\gamma \gamma} \eta^{\prime}$ events. The third (BKGIII) is from all the remaining peaking background channels. The fourth (BKGIV) is from combinatorial background components. In the fits, the signal is modeled by the MC-simulated shape convolved with a double-Gaussian function. The means and widths of signal mode dependent Gaussian functions are in the intervals $(-0.58,1.97) \mathrm{MeV}^{2} / c^{4}$ and $(0.16,3.70) \mathrm{MeV}^{2} / c^{4}$, respectively. The BKGI and BKGII are described by the corresponding MC-simulated shapes, and their sizes are fixed to the values estimated using the BFs from the PDG [1] and the corresponding misidentification rates. The shape and size of BKGIII are fixed to those obtained from the inclusive MC sample. BKGIV for $D^{0} \rightarrow K_{L}^{0} \eta_{\gamma \rho^{0}}^{\prime}$ is not smooth and is modeled by the MCsimulated shape; it is modeled by a linear function for the other signal decays. Figure 2 shows the results of the fits to the MM^{2} distributions of the accepted candidates in data.

There are combinatorial backgrounds in the $\phi \rightarrow K^{+} K^{-}$, $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}, \quad \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, \quad$ and $\quad \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$ signal regions, which can form a peak in the MM^{2} distributions. This kind of background is estimated by the corresponding sideband regions, defined as $M_{K^{+} K^{-}} \in(0.985,1.000) \cup$ $(1.045,1.060) \mathrm{GeV} / c^{2}, M_{\pi^{+} \pi^{-} \pi^{0}} \in(0.495,0.515) \cup(0.580$, $0.600) \mathrm{GeV} / c^{2}, \quad M_{\pi^{+} \pi^{-} \pi^{0}} \in(0.712,0.732) \cup(0.832$, $0.852) \mathrm{GeV} / c^{2}, \quad M_{\pi^{+} \pi^{-} \eta} \in(0.913,0.938) \cup(0.978$, $1.003) \mathrm{GeV} / c^{2}$. Their yields $\left(N_{\text {sid }}\right)$ are obtained from similar fits to individual MM^{2} distributions. Table I summarizes the fitted yields of $N_{\text {sig }}$ and $N_{\text {sid }}$, the normalization factors of background events in the signal and sideband

FIG. 2. Fits to the M^{2} distributions of the accepted candidate events. Data are shown as points with error bars. Blue solid curves are the fit result, red solid curves are the signal, pink dashed, yellow long-dashed-dotted, light blue dashed-dotted, and black dotted curves denote BKGI, BKGII, BKGIII, and BKGIV, respectively.
regions (S_{co}), the net signal yield ($N_{\text {net }}=N_{\text {sig }}-N_{\text {sid }} \cdot S_{\mathrm{co}}$), the signal efficiencies $\left(\epsilon_{\text {sig }}\right)$, and the obtained BFs $\left(\mathcal{B}_{\text {sig }}\right)$.

At $\sqrt{s}=3.773 \mathrm{GeV}$, the $D^{0} \bar{D}^{0}$ pairs are produced coherently. The measurements of BFs with the DT method are affected by the quantum correlation (QC) effect. Following Ref. [42], this effect is considered as a tag-mode-dependent correction factor, $f_{\mathrm{QC}}^{i}=\frac{1}{1-C_{f}^{i} \cdot\left(2 F_{+}^{\mathrm{sig}}-1\right)}$, where C_{f}^{i} is the strong-phase factor calculated as $C_{f}^{i}=\frac{2 r_{i} R_{i} \cos \delta_{f}^{i}}{1+r_{i}^{2}}, R_{i}$ is the coherence factor, δ_{f}^{i} is the strong-phase difference between the CF and DCS amplitudes, r_{f}^{i} is defined as $r_{f}^{i} e^{-i \delta_{f}^{i}} \equiv \frac{\left\langle f \mid \bar{D}^{0}\right\rangle}{\left\langle f \mid D^{0}\right\rangle}$, for the tag mode i; and $F_{+}^{\text {sig }}$ is the $C P+$ fraction for the signal decay and it equals to 1 for all the studied decays. With necessary parameters quoted from Refs. [43,44], the f_{QC}^{i} factors are determined to be $0.898 \pm 0.007,0.935 \pm 0.007$, and 0.972 ± 0.019 for $D \rightarrow K^{-} \pi^{+}, \quad D \rightarrow K^{-} \pi^{+} \pi^{0}, \quad$ and $D \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$, respectively. All signal decay final states studied are $C P+$ eigenstates. The averaged QC correction factor, which has been weighted by the ST yields in data, is determined to be $f_{\mathrm{QC}}=0.937 \pm 0.007$. Multiplying the directly measured BFs by this factor yields the reported BFs. After this correction, the residual uncertainty of f_{QC} will be assigned as a systematic uncertainty. For $D^{0} \rightarrow K_{L}^{0} \eta$ and $D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$, the BFs measured by two different η or η^{\prime} decay modes have been weighted by the combined statistical and independent uncertainties and the obtained results are shown in Table I.

In the measurements of the BFs for $D^{0} \rightarrow K_{L}^{0} X$ using the DT method, the systematic uncertainties associated with the ST selection are canceled. The major sources of systematic uncertainties related to the measured BFs are described below.

The uncertainty in the total yield of ST \bar{D}^{0} mesons has been studied in Ref. [45] and is evaluated as 0.5%. The tracking and particle identification (PID) efficiencies of charged kaons and pions are studied by analyzing DT
hadronic $D \bar{D}$ events [46]. The data/MC differences in various momentum intervals are reweighted by the corresponding momentum distributions of the signal decays. We correct the MC efficiencies to data by signal mode dependent factors of $(0.2-5.5) \%$, the larger difference between data and MC comes from the tracking efficiencies for low momentum K in $D^{0} \rightarrow K_{L}^{0} \phi_{K^{+} K^{-}}$decay. The residual systematic uncertainties are $(0.2-0.6) \%$ for tracking and PID efficiencies per $K^{ \pm}$or $\pi^{ \pm}$.

The systematic uncertainty due to the photon detection in $D^{0} \rightarrow K_{L}^{0} \eta_{\rho^{0} \gamma}^{\prime}$ decay is 1.0% per photon, as estimated from a $J / \psi \rightarrow \rho^{0} \pi^{0}$ control sample [47].

The systematic uncertainty of π^{0} reconstruction has been studied by using the DT events of $\bar{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{-} \pi^{+}$ vs. $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ and $K_{S}^{0} \pi^{0}$ [45]. After correcting where the MC simulation efficiencies to agree with data using the momentum-weighted difference $(0.5-0.6) \%$, the residual systematic uncertainty, 0.7%, is assigned as the systematic uncertainty in π^{0} reconstruction. Due to the limited size of the η sample, the uncertainties of the η reconstruction in $D^{0} \rightarrow K_{L}^{0} \eta_{\gamma \gamma}$ and $D^{0} \rightarrow K_{L}^{0} \eta_{\pi^{+} \pi^{-} \eta}^{\prime}$ decays are assigned to be 0.5% and 0.7% by referring to the π^{0} reconstruction.

The systematic uncertainties due to the mass windows of $\phi_{K^{+} K^{-}}, \eta_{\pi^{+} \pi^{-} \pi^{0}}, \omega_{\pi^{+} \pi^{-} \pi^{0}}, \eta_{\pi^{+} \pi^{-} \eta}^{\prime}$, and $\eta_{\rho^{0} \gamma}^{\prime}$ candidates are studied using control samples of $D^{0} \rightarrow K_{S}^{0} \phi_{K^{+} K^{-}}$, $K_{S}^{0} \eta_{\pi^{+} \pi^{-} \pi^{0}}, K_{S}^{0} \omega_{\pi^{+} \pi^{-} \pi^{0}}, K_{S}^{0} \eta_{\pi^{+} \pi^{-} \eta}^{\prime}$, and $K_{S}^{0} \eta_{\rho^{0} \gamma}^{\prime}$, respectively. The relative differences of $(0.2-0.5) \%$ in the acceptance efficiencies between data and MC simulation are taken as individual systematic uncertainties.

The systematic uncertainty due to requiring no extra charged track, π^{0} and η is studied using the control sample of $D^{0} \rightarrow K_{S}^{0} \pi^{0}$. The relative difference in efficiencies between data and MC simulation, 0.8%, is assigned as the systematic uncertainty.

The systematic uncertainties arising from the MM^{2} fits are evaluated by varying the signal shape, the background shape, and the size of peaking backgrounds within their

TABLE I. The quantities used for BF determinations and the obtained BFs. The signal efficiencies include the BFs for all possible subdecays and necessary correction factors mentioned later. The listed BFs have been corrected by the QC factor f_{QC} and $\overline{\mathcal{B}}$ denotes the weighted average BFs for $D^{0} \rightarrow K_{L}^{0} \eta$ and $D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$. The first and second uncertainties for \mathcal{B} are statistical and systematic, respectively; uncertainties for other variables are statistical only.

Decay	$N_{\text {sig }}$	$N_{\text {sid }}$	$S_{\text {co }}$	$N_{\text {net }}$	$\epsilon_{\text {sig }}(\%)$	$\mathcal{B}_{\text {sig }}(\%)$	$\overline{\mathcal{B}}_{\text {sig }}(\%)$
$D^{0} \rightarrow K_{L}^{0} \phi_{K^{+} K^{-}}$	1271 ± 39	276 ± 19	1.33 ± 0.17	904 ± 46	9.02 ± 0.10	$0.414 \pm 0.021 \pm 0.010$	\ldots
$D^{0} \rightarrow K_{L}^{0} \eta_{\gamma \gamma}$	2132 ± 71	\ldots	\ldots	2132 ± 71	20.46 ± 0.15	$0.431 \pm 0.014 \pm 0.013$	$0.433 \pm 0.012 \pm 0.010$
$D^{0} \rightarrow K_{L}^{0} \eta_{\pi^{+} \pi^{-} \pi^{0}}$	565 ± 29	36 ± 10	0.61 ± 0.10	543 ± 30	5.11 ± 0.07	$0.439 \pm 0.024 \pm 0.015$	
$D^{0} \rightarrow K_{L}^{0} \omega_{\pi^{+} \pi^{-} \pi^{0}}$	6692 ± 100	368 ± 39	1.58 ± 0.07	6110 ± 118	21.70 ± 0.18	$1.164 \pm 0.022 \pm 0.028$	\ldots
$D^{0} \rightarrow K_{L}^{0} \eta_{\pi^{+} \pi^{-\eta}}^{\prime}$	688 ± 29	8 ± 6	0.47 ± 0.08	684 ± 29	3.30 ± 0.10	$0.857 \pm 0.037 \pm 0.022$	\ldots
$D^{0} \rightarrow K_{L}^{0} \eta_{\rho^{0} \gamma}^{\prime}$	2002 ± 61	\ldots	\ldots	2002 ± 61	10.55 ± 0.15	$0.785 \pm 0.024 \pm 0.023$	$0.809 \pm 0.020 \pm 0.016$

TABLE II. Systematic uncertainties (\%) in the measurements of the BFs.

Source	$K_{L}^{0} \phi_{K^{+} K^{-}}$	$K_{L}^{0} \eta_{\gamma \gamma}$	$K_{L}^{0} \eta_{\pi^{+} \pi^{-} \pi^{0}}$	$K_{L}^{0} \omega_{\pi^{+} \pi^{-} \pi^{0}}$	$K_{L}^{0} \eta_{\pi^{+} \pi^{-} \eta}^{\prime}$	$K_{L}^{0} \eta_{\rho^{0} \gamma}^{\prime}$
ST yield $N_{\text {tag }}$	0.5	0.5	0.5	0.5	0.5	0.5
$K^{ \pm} / \pi^{ \pm}$tracking	0.4	\ldots	0.3	0.2	0.6	0.2
$K^{ \pm} / \pi^{ \pm}$PID	0.3	\ldots	0.2	0.2	0.2	0.2
γ reconstruction	\ldots	\ldots	\ldots	\ldots	\ldots	1.0
π^{0} / η reconstruction	\ldots	0.5	0.7	0.7	0.7	\ldots
Mass window requirement	0.2	\ldots	0.2	0.1	0.5	0.1
$N_{\text {charged } / \pi^{0} / \eta}$ MM	fit	0.8	0.8	0.8	0.8	0.8
Opening angle $_{\text {Quoted BFs }}$	0.9	2.3	2.4	1.1	1.4	0.8
MC statistics	1.4	1.4	1.4	1.3	0.9	1.2
Strong phase	1.0	0.5	1.2	0.7	1.2	1.3
Total	0.6	0.3	0.5	0.5	0.6	0.4

uncertainties. The relative changes of various remeasured BFs are added in quadrature and these totals, $(0.9-2.4) \%$, are taken as the corresponding systematic uncertainties.

The BFs with alternative sideband regions of $M_{K^{+} K^{-}}$and $M_{\pi^{+} \pi^{-} \pi^{0}}\left(\pm 10 \mathrm{MeV} / c^{2}\right.$ or $\left.\pm 15 \mathrm{MeV} / c^{2}\right)$ as well as the requirement of $M_{\pi^{+} \pi^{-}}^{\text {recoil }}$ (enlarged by $20 \mathrm{MeV} / c^{2}$) are examined. Accounting for correlations, changes in the remeasured BFs are negligible.

To estimate the systematic uncertainties due to the requirement of the opening angle between any remaining shower and the missing momentum of $\bar{D}^{0} X$, the BFs are measured using different angle requirements. The maximum deviation of the BFs from (0.9-1.6)\% is taken as the systematic uncertainty.

TABLE III. $\quad C P$-conjugate $\mathrm{BFs}\left(\mathcal{B}_{\text {sig }}^{+}\right.$and $\left.\mathcal{B}_{\text {sig }}^{-}\right)$and their asymmetries $\left(\mathcal{A}_{C P}^{\text {sig }}\right)$. The first and second uncertainties are statistical and systematic, respectively.

Decay	$\mathcal{B}_{\text {sig }}^{+}(\%)$	$\mathcal{B}_{\text {sig }}^{-}(\%)$	$\mathcal{A}_{C P}^{\text {sig }}(\%)$
$D^{0} \rightarrow K_{L}^{0} \phi$	0.428 ± 0.029	0.405 ± 0.034	$2.7 \pm 5.4 \pm 0.7$
$D^{0} \rightarrow K_{L}^{0} \eta$	0.445 ± 0.018	0.421 ± 0.017	$2.8 \pm 2.9 \pm 0.4$
$D^{0} \rightarrow K_{L}^{0} \omega$	1.200 ± 0.030	1.121 ± 0.031	$3.4 \pm 1.9 \pm 0.6$
$D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$	0.789 ± 0.028	0.826 ± 0.028	$-2.2 \pm 2.5 \pm 0.4$

The uncertainties of the quoted BFs [1] of $\phi \rightarrow K^{+} K^{-}$, $\eta \rightarrow \gamma \gamma, \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$, and $\eta^{\prime} \rightarrow$ $\rho^{0} \gamma$ are assigned as individual systematic uncertainties.

The QC effect on the measured BFs has been corrected by the factor f_{QC} aforementioned and the residual error of f_{QC} is assigned as the systematic uncertainty, which is 0.7%.

The uncertainties arising from the finite sizes of the signal MC samples are $(0.3-0.6) \%$. Systematic uncertainties from other selection criteria are found to be negligible.

For each signal decay, the total systematic uncertainty is obtained by summing individual contributions in quadrature and is shown in Table II.

The BFs of D and \bar{D} decays, $\mathcal{B}_{\text {sig }}^{+}$and $\mathcal{B}_{\text {sig }}^{-}$, are also measured separately. Their asymmetry is determined by $\mathcal{A}_{C P}^{\text {sig }}=\frac{\mathcal{B}_{\text {sig }}^{+}-\mathcal{B}_{\text {sig }}^{-}}{\mathcal{S}_{\text {sig }}^{+}+\mathcal{B}_{\text {sig }}^{-}}$. The obtained BFs and asymmetries are summarized in Table III. No significant $C P$ violation is observed. Several systematic uncertainties cancel in the asymmetry, such as the tracking and PID of $\pi^{+} \pi^{-}, K^{+} K^{-}$ pairs, π^{0}, η reconstruction, quoted $\mathrm{BFs}, K_{S}^{0}, \omega, \eta^{(\prime)}, \phi$ sideband choices, and the strong phase between D^{0} and \bar{D}^{0} decays. The other systematic uncertainties are estimated separately as above.

TABLE IV. Comparison of measured BFs and $K_{S}^{0}-K_{L}^{0}$ asymmetries with theoretical calculations of Ref. [6]. $\mathcal{B}_{\mathrm{exp}}$ ($\mathcal{B}_{\mathrm{FAT}}$) and $\mathcal{R}\left(D^{0}\right)_{\exp }\left(\mathcal{R}\left(D^{0}\right)_{\mathrm{FAT}}\right)$ are the BFs and $K_{S}^{0}-K_{L}^{0}$ asymmetries of the experimental measurements (theoretical calculations).

Decay	$\mathcal{B}_{\exp }(\%)$	$\mathcal{B}_{\text {FAT }}(\%)$	Difference	$\mathcal{R}\left(D^{0}\right)_{\exp }$	$\mathcal{B}\left(D^{0}\right)_{\text {FAT }}$	Difference
$D^{0} \rightarrow K_{L}^{0} \phi$	$0.414 \pm 0.021 \pm 0.010$	0.33 ± 0.03	2.2σ	-0.001 ± 0.047		2.4σ
$D^{0} \rightarrow K_{L}^{0} \eta$	$0.433 \pm 0.012 \pm 0.010$	0.40 ± 0.07	0.5σ	0.080 ± 0.022	0.113 ± 0.001	1.5σ
$D^{0} \rightarrow K_{L}^{0} \omega$	$1.164 \pm 0.022 \pm 0.028$	0.95 ± 0.15	1.4σ	-0.024 ± 0.031	4.4σ	
$D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$	$0.809 \pm 0.020 \pm 0.016$	0.77 ± 0.07	0.5σ	0.080 ± 0.023		1.6σ

In summary, by analyzing $2.93 \mathrm{fb}^{-1}$ of $e^{+} e^{-}$annihilation data taken at $\sqrt{s}=3.773 \mathrm{GeV}$ with the BESIII detector, we have performed the first measurements of the absolute BFs of $D^{0} \rightarrow K_{L}^{0} \phi, \quad D^{0} \rightarrow K_{L}^{0} \eta, \quad D^{0} \rightarrow K_{L}^{0} \omega, \quad$ and $\quad D^{0} \rightarrow K_{L}^{0} \eta^{\prime}$. Combining the BFs measured in this work with the known values for $\mathcal{B}\left(D^{0} \rightarrow K_{S}^{0} X\right)$ [1], the asymmetries of $\mathcal{B}\left(D^{0} \rightarrow K_{S}^{0} X\right)$ and $\mathcal{B}\left(D^{0} \rightarrow K_{L}^{0} X\right)$ are determined. Table IV shows the comparison of the measured BFs and $K_{S}^{0}-K_{L}^{0}$ asymmetries with the theoretical calculations of Ref. [6]. Clear asymmetries are found in $D^{0} \rightarrow K_{L}^{0} \eta, K_{L}^{0} \eta^{\prime}$, but none is found in the other two modes. Our results $\mathcal{R}\left(D^{0}, \eta\right)=$ 0.080 ± 0.022 and $\mathcal{R}\left(D^{0}, \eta^{\prime}\right)=0.080 \pm 0.023$ are consistent with $\mathcal{R}\left(D^{0}, \pi^{0}\right)=0.108 \pm 0.035$ measured by CLEO [10] and imply that the $K_{S}^{0}-K_{L}^{0}$ asymmetry in $D^{0} \rightarrow$ $K_{S / L}^{0} \eta, K_{S / L}^{0} \eta^{\prime}$ modes is approximately $2 \tan ^{2} \theta_{C}$ as expected based on $\mathrm{SU}(3)$ symmetry [2-6]. Comparing with the $\mathcal{R}\left(D^{+}, \pi^{+}\right)$[10] and $\mathcal{R}\left(D_{s}^{+}, K^{+}\right)$[48], a significantly larger asymmetry for $\mathcal{R}\left(D^{0}, X\right)$ is expected due to a smaller strong phase difference between the DCS and CF amplitudes. However, the obtained $K_{S}^{0}-K_{L}^{0}$ asymmetries in $D^{0} \rightarrow$ $K_{S, L}^{0} \phi$ and $K_{S, L}^{0} \omega$ decays disagree with the predicted value [6] by 2.4σ and 4.4σ, respectively. The main possible reason of this tension is that the $E_{P}=E_{V}$ assumption in Ref. [6] is not satisfied. In addition, the asymmetries of the $C P$ conjugate BFs for these D decays are determined and no significant $C P$ violation is found. These results offer crucial information to more reliably calculate the BFs of the $D \rightarrow$ $P P$ and $D \rightarrow V P$ decays in theories and will aid investigations of quark $\mathrm{SU}(3)$-flavor symmetry breaking as well as $C P$ violation in the hadronic decays of charmed mesons [49,50]. Our $K_{S}^{0}-K_{L}^{0}$ asymmetries offer the first opportunity to access individual amplitudes of DCS processes involving K^{0} which can be only measured with quantum correlated $e^{+} e^{-} \rightarrow D \bar{D}$ production near the threshold, thereby further restricting the $D^{0}-\bar{D}^{0}$ mixing effect in charm decays.

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key R\&D Program of China under Grants Nos. 2020YFA0406400 and No. 2020YFA0406300; the National Natural Science Foundation of China (NSFC) under Grants No. 11775230, No. 12035009, No. 11875170, No. 11475090, No. 11625523, No. 11635010, No. 11735014, No. 11822506, No. 11835012, No. 11935015, No. 11935016, No. 11935018, No. 11961141012, No. 12022510, No. 12025502, No. 12035013, No. 12061131003, No. 12192260, No. 12192261, No. 12192262, No. 12192263, No. 12192264, and No. 12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Grants No. U1732263 and No. U1832207; CAS Key Research Program of Frontier Sciences under Grant No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Grant No. 758462; European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant Agreement No. 894790; German Research Foundation DFG under Grant No. 443159800, Collaborative Research Center CRC 1044, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Grant No. DPT2006K120470; National Science and Technology fund; Olle Engkvist Foundation under Grant No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Grant No. 2016.0157; The Royal Society, UK under Grants No. DH140054 and No. DH160214; The Swedish Research Council; and U.S. Department of Energy under Awards No. DE-FG02-05ER41374 and No. DE-SC-0012069.
[1] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[2] I. I. Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995).
[3] J. L. Rosner, Phys. Rev. D 74, 057502 (2006).
[4] B. Bhattacharya and J. L. Rosner, Phys. Rev. D 81, 014026 (2010).
[5] D. N. Gao, Phys. Rev. D 91, 014019 (2015).
[6] D. Wang, F. S. Yu, P. F. Guo, and H. Y. Jiang, Phys. Rev. D 95, 073007 (2017).
[7] D. Wang, F. S. Yu, and H. N. Li, Phys. Rev. Lett. 119, 181802 (2017).
[8] Y. Amhis et al. (HFLAV Collaboration), Eur. Phys. J. C 77, 895 (2017).
[9] D. N. Gao, Phys. Lett. B 645, 59 (2007).
[10] Q. He et al. (CLEO Collaboration), Phys. Rev. Lett. 100, 091801 (2008).
[11] R. L. Kingsley, S. B. Treiman, F. Wilczek, and A. Zee, Phys. Rev. D 11, 1919 (1975).
[12] M. Gronau, Phys. Lett. B 730, 221 (2014); 735, 282(E) (2014).
[13] H. J. Lipkin, Phys. Rev. Lett. 46, 1307 (1981).
[14] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
[15] Q. Qin, H. N. Li, C. D. Lü, and F. S. Yu, Phys. Rev. D 89, 054006 (2014).
[16] H. Y. Cheng, C. W. Chiang, and A. L. Kuo, Phys. Rev. D 93, 114010 (2016).
[17] W. Kwong and S. P. Rosen, Phys. Lett. B 298, 413 (1993).
[18] Y. Grossman and D. J. Robinson, J. High Energy Phys. 04 (2013) 067.
[19] H. N. Li, C. D. Lü, and F. S. Yu, Phys. Rev. D 86, 036012 (2012).
[20] Q. Qin, C. Wang, D. Wang, and S. H. Zhou, arXiv: 2111.14472.
[21] Z. Z. Xing, Mod. Phys. Lett. A 34, 1950238 (2019).
[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 124, 241802 (2020).
[23] M. Ablikim et al. (BESIII Collaboration), J. High Energy Phys. 05 (2021) 164.
[24] I. I. Bigi, A. Paul, and S. Recksiegel, J. High Energy Phys. 06 (2011) 089.
[25] G. Isidori, J. F. Kamenik, Z. Ligeti, and G. Perez, Phys. Lett. B 711, 46 (2012).
[26] J. Brod, A. L. Kagan, and J. Zupan, Phys. Rev. D 86, 014023 (2012).
[27] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012).
[28] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 100, 093002 (2019).
[29] H. N. Li, C. D. Lü, and F. S. Yu, arXiv:1903.10638.
[30] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 211803 (2019).
[31] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37, 123001 (2013); Phys. Lett. B 753, 629 (2016).
[32] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010).
[33] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[34] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun. 130, 260 (2000).
[35] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[36] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping, and H. Chen, Chin. Phys. Lett. 31, 061301 (2014).
[37] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[38] R. M. Baltrusaitis et al. (MARKIII Collaboration), Phys. Rev. Lett. 56, 2140 (1986).
[39] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 124, 241803 (2020).
[40] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 734, 227 (2014).
[41] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[42] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 072006 (2019).
[43] T. Evans, S. T. Harnew, J. Libby, S. Malde, J. Rademacker, and G. Wilkinson, Phys. Lett. B 757, 520 (2016).
[44] Heavy Flavor Averaging Group (HFLAV), https://hflav.web .cern.ch/content/charm-physics.
[45] M. Ablikim et al. (BESIII Collaboration), Eur. Phys. J. C 76, 369 (2016).
[46] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 97, 072004 (2018).
[47] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 86, 052011 (2012).
[48] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 112005 (2019).
[49] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44, 040001 (2020).
[50] H. B. Li and X. R. Lyu, Natl. Sci. Rev. 8, nwab181 (2021).

[^0]: ${ }^{\text {a }}$ Also at Bogazici University, 34342 Istanbul, Turkey.
 ${ }^{\mathrm{b}}$ Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia.
 ${ }^{\text {c Also }}$ at the Novosibirsk State University, Novosibirsk 630090, Russia.
 ${ }^{\text {d }}$ Also at the NRC "Kurchatov Institute", PNPI, 188300 Gatchina, Russia.
 ${ }^{\mathrm{e}}$ Also at Istanbul Arel University, 34295 Istanbul, Turkey.
 ${ }^{\mathrm{f}}$ Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany.
 ${ }^{\mathrm{g}}$ Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China.
 ${ }^{\text {h }}$ Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People's Republic of China.
 ${ }^{1}$ Also at Harvard University, Department of Physics, Cambridge, Massachusetts 02138, USA.
 ${ }^{\mathrm{j}}$ Currently at: Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia.
 ${ }^{\text {k }}$ Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China.
 ${ }^{1}$ School of Physics and Electronics, Hunan University, Changsha 410082, China.
 ${ }^{\mathrm{m}}$ Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China.
 ${ }^{\text {n }}$ Frontier Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People's Republic of China.
 ${ }^{\circ}$ Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by $S C O A P^{3}$.

