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Abstract: Let (2,5, ) and (€2,3,v) be two finite measure spaces and let LP? (1) and LY (v) be two generalized
grand Lebesgue spaces [9,10], where 1 < p,q < oo and 6 > 0. In Section 2 we discuss the inclusion properties of
these spaces and investigate under what conditions L) (1) C L?? (v) for two different measures pu and v. Let Q
be a bounded subset of R"™. We know that the Lebesgue space LP (i) admits an approximate identity, bounded in
L' (), [5,8]. In Section 3 we investigate the approximate identities of LP? (1) and show that it does not admit such

an approximate identity. Later we discuss aproximate identities of the space [L”] the closure of C2° () in LP? (1),

p),0

where CZ° (2) denotes the space of infinitely differentiable complex-valued functions with compact support on R™.
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1. Introduction

Let (©,>", 1) be a measure space. It is well known that 7 () C 7 (Q) whenever 0 < p < ¢ < co. Subramanian
[19] investigated all positive measures p on Q for which LP () C L7 (u) whenever 0 < p < ¢ < oo. Romero
[17] improved and completed some results of Subramanian. Miamee [13] considered the more general inclusion

LP (p) C L9(v), where p and v are two measures. Giirkanli [10] generalized these results to the Lorentz
spaces.

Let © be a nonempty set, Y. a o-algebra of subsets of Q and p a positive finite measure on the

measurable space (©,). The grand Lebesgue space LP) (1) was introduced in [11]. This is a Banach space
defined by the norm

_1
p—e

1, = sw e [Is7cau]
< —
Q

EXP

where 1 < p < co. For 0 <e <p—1, L? (u) C L” () € LP~¢ (1) hold. For some properties and applications

of LP) (i) spaces we refer to papers [1 —4,6,11]. A generalization of the grand Lebesgue spaces are the spaces

*Correspondence: turangurkanli@arel.edu.tr
2010 AMS Mathematics Subject Classification: Primary 46E30; Secondary 46E35; 46B70

3195

0 This work is licensed under a Creative Commons Attribution 4.0 International License.



https://orcid.org/0000-0001-7572-9152

GURKANLI/Turk J Math

LY (1), 6 >0, defined by the norm (see [1,11])

1
p—e

0 _ 2]
1fllpy00 = fllpye= sup ev== /Iflp “du = sup e ||f]|,_. < oo;
0<e<p—1 &

0<e<p—1

when 6 = 0 the space LP)° (1) reduces to the Lebesgue space LP (u) and when 6 = 1 the space LP)! (u)
reduces to the grand Lebesgue space LP) (1) . More precisely, we have forall 1 <p<oo and 0 <e<p-—1

LP () C P () C P () .

Different properties and applications of these spaces were discussed in [1,2,6,7,9].

If 1 and v are two measures on a o—algebra > of subsets of {2, we say that v is absolutely continuous
with respect to p if v(E) =0 for every E € > such that u(E) = 0. We denote it by the symbol v <« p. If u
and v are absolutely continuous with respect to each other (i.e v < p and p < v ) then we denote it by the
symbol p ~ v.

Let A be a Banach algebra. A Banach space (B, ||.||z) is called Banach module over (A4,|.||,) if B is a

module over A in the algebraic sense for some multiplication, (a,b) — a.b, and satisfies
la-bll g < [lall 4 [1bll 5 -
An approximate identity in a Banach algebra A is a net (eq),c; C A such that for every f € A,

tim | feo — /] = 0.

For two Banach modules By and Bs over a Banach algebra A, we write M4 (B, Bs) or Hom  (B1, Bs)
for the space of all bounded linear operators T' from B; into By satisfying T (ab) = T (b) for all a € A,b € By.
These operators are called multipliers (right) or module homomorphism from Bj into By, [12,14 — 16]. By
Corollary 2.13 in [15],

Homy (By,B3) = (By ®4 Ba)",

where Bj is the dual of B and ®, is the A— module tensor product.

2. Inclusions of generalized grand Lebesgue spaces

In this section we will accept that 1 < p,q < oo, 6§ >0, and (£,_) is a measurable space and all measures are
defined on the o—algebra ).

Lemma 1 Let (2,5, ) and (,,v) be two finite measure spaces. Then the inclusion LP)? (u) C L9 (v)
holds in the sense of equivalence classes if and only if p and v are absolutely continuous with respect to each

other (i.e u ~ v) and LP)Y (u) C LYY (v) in the sense of individual functions.

Proof Suppose that LP)¢ (1) C L9 (v) in the sense of equivalence classes. Let f € LP)Y (11) be any individual
function. Then f € LP)? (1) in the sense of equivalence classes. By assumption, f € L9-? (v) in the sense of

equivalence classes. This implies f € L9 (v) in the sense of individual functions. Then L) (u) C L9 (v)
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in the sense of individual functions. To show v < pu, take any set E € Y. with p(F) = 0. Then xyg = 0,
i — a.e, and it is in the equivalence classes of 0 € LP (1), where yg is the characteristic function of E. By the

inclusion LP (p) € LP)Y (u) € L9Y (v) in the sense of equivalence classes, we have 0 € L?¢ (v). Then

6 1 0
sup 7= [v(E)]7F = sup €7 |xell,_. = lIxely,o =0 (1)
0<e<qg—1 0<e<g—1

Since L9-? (v) € L97¢ (v), there exists a constant C' > 0 such that
el < Clixelyo-

Then by (1) we have xg =0, v — a.e. Thus, v(E) =0 and so v < p. Similarly, one can prove that pu < v.

The proof of the other direction is clear. O

Theorem 1 Let (2,5, ) and (Q,3,v) be two finite measure spaces. Then LP)? (p) € LDY (v) holds in the

sense of equivalence classes if and only if u ~ v and there exists a constant C (p,q) > 0 such that

1l 00 < C@:0) £l 0. )
for all f e LP)0 ().

Proof Assume that the inequality (2) is satisfied and p ~ v. By the inequality (2) the inclusion LP)¢ (1) C
L9 (v) holds in the sense of individual functions. Then by Lemma 1, the inclusion LP)>? () € L9-? (v) holds

in the sense of equivalence classes.
Conversely, assume that LP)? (u) € L99 (v) holds in the sense of equivalence classes. The grand

Lebesgue space LP)? (1) is a Banach space with the sum norm
A= 1F M), + 1 llgy 0,0 -

Indeed, if we get any Cauchy sequence (f,,),,cy in the normed space (L (n),||.|) , it is also a Cauchy sequence
in the spaces (Lp)’e (n), ”'”p)ﬁ,u) and (Lq)’e (v), H.||q)’9’v) . Then (fn),cy converges to functions f and g in

spaces LP)0 (1) and L9+ (v), respectively. Thus, one can find a subsequence (f,,,) of (f,) such that f,, — f,
w—a.e and f,, = g, v — a.e. Since v is absolutely continuous with respect to u, then f,, — f, v — a.e.
Thus, f =g , v—a.e. Then (f,) converges to f in the normed space (LP?(y),].||). Then the norms |.|

and ||| are equivalent (see proposition 11, in [18]), and so there exists a constant C (p,q) > 0 such that

p),0,p
Hf” S C(p7 q) ||f||p),0,p,
for all f € L9 (u). This implies

1100 < 171 < C 0.0) 11l 0.0

for all f e LP)? (1) . On the other hand, by Lemma 1, 4 and v are absolutely continuous with respect to each
other. This completes the proof. O
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Theorem 2 Let (,> , 1) and (Q,>,v) be two finite measure spaces. Then the following statements are

equivalent.
1. We have LP)? () C LP)0 (v) for p > 1 and for all 6 > 0.
2. p=v and there exists a constant C (p,0) >0 such that

1

sup (v(E)7= < C(p,0) sup (u(E))7=

0<e<g—1 0<e<p-1
forall E€Y.
3. Ll( ) C Lt (v).
4. [P0 (1 )QLPW( ) for p>1 and for all § > 0.

Proof (1) = (2): By Theorem 1, = v and there exists C (p,6) > 0 such that
111,00 < C @:0) 1 f1l,).0,0 3)

forall f € LP9 (u) . If E €Y, then xg € LP (1) . Since LP (u) € LP? (u) € LP)Y (v), then xg € LP)Y (1) C
L) (v) and by (3) we have

Ix2llp).00 < C@0)IxEl,)0, - (4)
Thus,
1 1
sup ("v(E))*° <C(p,0) sup (u(E))?~. (5)
0<e<p—1 0<e<p—1

(2) = (3) : Since when # = 0, the space L”)? (1) reduces to the Lebesgue space L (1), by (5),

8=
I
Q
<
N~—
=
S|
S~—
1

(v(E)? < C(p,0) (1 (E))

This implies
v(E) < Mu(E), (6)

where M = C (p)”. Then by Proposition 1 in [13], we have L' (u) C L (v).
(3) = (4): By the inclusion L' (1) C L' (v) there exists C; > 0 such that

gl < Crllglly,, (7)
for all g € L' (). Let f € L9 (u). Then
=
£l = s (& [1f7 ] <n
0<e<p—1 J

for some M > 0. This implies |f|"~° € L' (u) for all € € (0,p—1]. Since L (1) C L (v), then |f|’™° € L (v).
By (7) we have

Jisravsen [ip~au

O O
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Thus, we obtain

1 1
p—e p—¢€

/|f|”‘5dv <c /|f|’”du ,
Q Q

1
where C'= C77°. If we get the supremum in both sides, we have

1 1
pP—¢ p—¢

swp (1) <e swo (it
Q

0<e<p-—1 0<e<p—1
Q

for all & > 0. Then
11,00 < Cllfll,y0, <CM <o

for all f € LP)? (). Finally, we have LP)¢ (1) C LP)¢ (v) for all 6 > 0.

(4) = (1) : This is easy. O

Theorem 3 Let (Q,> ), 1) be a finite measure space and let p and g be any two positive real numbers. Then
L2 () € L () (®)
whenever 1 < q < p, and for all § > 0.

Proof Since for every 0 < e < ¢—1, we have ¢ — e < p — ¢, then LP~¢ (u) C L97¢ (u). Thus, there exists
C > 0 such that
[fllg—e < ClIfll,-c

for all f € LP (u). Let f € LP)Y (). We have

1

q—e
_ _0
1o = s ([l dn] = s =i,
0<e<g—1 0<e<g—1
< C swp er||f|,_.=C sup ercercerc |f|,_.
0<e<qg—1 0<e<Lg—1
0(p—q)
— Oo sup 15@73@%@% 171l
<e<q—
0(p—a)
< C sup cTATD sup 7 | f], L
0<e<q—1 0<e<qg—1

0
< Cyp sup gr—= =C
= 0 O<5§I;—1 Hf”pfs 0 ||f||p),07#7

0(p—a)
where Cp = C'supg.<,_1 £T-a7a-9. Since q < p, Cy is finite and thus f € L9-? (1) . Hence,
L2 () € LY ()

whenever p < ¢, and for all 6 > 0. O
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3. Approximate identities and consequences
In this section we will assume that €2 is a bounded subset of R™ and 1 < p,q < oo, 6 > 0.

We know that C2° (Q) is not dense in LP)¢ (11), where C° () denotes the space of infinitely differentiable
complex-valued functions with compact support on € [9]. Its closure [LP] , , consists of functions f € P9 ()
such that

. _0
Eh_I)T%)gp N Hf”p—g - 0

It is known that the Lebesgue space LP (1) admits an approximate identity bounded in L' (1) [5,8].

The following theorem shows that the this property is not true for generalized grand Lebesgue space.

Theorem 4 The generalized grand Lebesgue space LP)? (1) does not admit an approxzimate identity, bounded
in L' ().

Proof Assume that (eq),; is an approximate identity in L9 (1) bounded in L' (x). Then there exists a

constant M > 0 such that [le,|, < M for all a € I. Take any function f € L)Y (1) — [LP],) ¢ (for example

the function f(t) ==z 5, 1<p< o). Then e, * f — f in LP) (1) . Since

1
p—e

lim 59/|e,l*f|pfE du — limers lea * fll,_.
e—0
Q

e—=0
< li _0
p—e
< lim 7= Jleally 1],
. _6
< Mlimes |[fl],_. =0,

then e, * f € [Lp]p)’(, for each « € I. This implies f € [Lp]p)’o. This contradicts the assumption f €

LY () — [LP],)6 - Then L) (1) does not admit an approximate identity bounded in L' (p). O

Theorem 5 a. The generalized grand Lebesque space LP)? (w) is a Banach convolution module over L* ().

b. The space [Lp]p)’g is a Banach convolution module over L' (u).

Proof a. We know that LP)? (i) is a Banach space [9], and LP (u) is a Banach L' (1) —module. Let f €
L' (u) and g € LP) (). Then

1
p—¢

I eglo=, s (< [1fear=ap o)
0<e<p—1 A

<e

_0 _0
= sup er= [[fxgl,_.< sup er= |[f], llgll,_.
0<e<p—1 0<e<p—1

2]
= su gp—e = .
1f1y oS 19llp—c = L7l gl )0
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It is easy to prove the other conditions for L)Y (1) to be a Banach convolution module over L' (1) .

b. It is easy to see that [LP], , is a vector space. Since [LP], , C LP)9 (1) is closed in L) (1), and
L9 (1) is a Banach space, then [LP],) ¢ is a Banach space. The inequality (9) is satisfied for all f € L' ()
and g € [L?] ) 4. Then [LF] ) , is a Banach L' (1) — module. O

Theorem 6 a. The space [LP],,, admits an approzimate identity bounded in L' (u) .

b. [LP],).. admits an approzimate identity bounded in L' (i) and with compactly supported Fourier

transforms.

Proof First we shall prove that the closure of LP (u) in LP)? (1) is [LP],). Let h € LP (1) be given. Since
LP () € LPM? () € LP~= (u) , then

p—e

. 0 p—e T P _

ti (< [Inp=tdn) =t s, o

Q
Hence, h € [LP],,s . This implies
LP () C [LP]p0 -
Since
C&(R") € LP () C [LP]p0 (10)

we have

(L]0 = C (R™) C LP (p) C [LP]y)0,

where the closures are in the norm ||.| Then

P),0,p "

LP (p) = Cg° (R™) = [LP],)0 - (11)

bounded in L' (u).
Then there exists a constant M > 1, such that |le.||; < M for all o € I. Also, given any u € LP () and

It is known by Lemma 1.12 in [8] that LP (u) admits an approximate identity (e),.;,

6 > 0, there exists ag € I such that

(12)

||ea*ufu|\p < 3

for all a > ag. We shall show that (e),.; is also an approximate identity in [LP],) s . Let f € [L?],) s be given.

Since LP (u) is dense in [LF],) 4, in the norm ||.[, o, there exists g € L (u) such that

J

17 = gl < 57 (13)

Then
”e(x*f*f”p),g: ”6(1*f*f*ea*g+6a*g+gfg“p)79 (14)

< fleas f—eaxglyo+leasg—glyo+llg—Flo-
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and

lea * f=eaxgllyy o= lleax(f =9, (15)

) 1)
< Nealls 107 = Dlyy.0 < MG = 9l < Mzt = 5.

Since M > 1, combining (12) (13),(14), and (15), we obtain

) )
llea* f = fllpe <5 +35+537 <&
This completes the proof of part (a). The proof of part (b) is obvious. O

As an application of the approximate identities we will give the following theorem.

Theorem 7 a) The space of multipliers M(L1 (u),([Lp]p),g)*) is isometrically isomorphic to dual space
([LP).0)" (dual of [LP],.0).

b) The space of multipliers M (Ll (,u)7(Lp)’9 (u))*) is isometrically isomorphic to the dual space
(LY (p) = LP)? (u))* If f is an element in the space of multipliers M (Ll (n), (LP? (u))*) , then there is

an extension F of f to a continuous linear form on LP)Y (1) so that

)

e (o0

= [ (2 s 0 )

*

where HF\ (Lo (u))*H and Hf| (L (p) = LP)? (u))*H denote the norms on the spaces (LP)Y ()" and
(LY () % LP)0 ()", respectively.

Proof a) We know by Theorem 5 that [LP],, is a Banach L' (1) —module. Also, by Theorem 6, L' () *

[LP],).6 is dense in [L?],) o in the |.] norm. Then by the module factorization theorem [20], we have

p),0,1
LY (1) % [LP]y0 = [LP)py0 - (16)

Thus, [LP],). is an essential Banach module over L' (). Then by Corollary 2.13 in [15], and by (16) we

obtain

*

M (L (1), ([LP]ny0)") = (L' (1) # [LP]00) " = ([LP]y0)" -
b) Again by Corollary 2.13 in [15],
M (LY (), (22 (1)) = (2 )+ 29 ()

On the other hand, by Theorem 5, LP)Y (1) is a Banach L' (1) —convolution module. Thus, L' (1) *LP"? (u) C
L)Y (). Then if f € M (Ll (), (LP? (,u))*) , by the Hahn-Banach extension theorem, there is an extension

F of f to a continuous linear form on LP-? (1) so that HF | (LP)? (u))*H = Hf | (L* (p) * LP)? (u))*H . This

completes the proof. O
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