

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2018) 42: 3195 – 3203 © TÜBİTAK doi:10.3906/mat-1803-89

Inclusions and the approximate identities of the generalized grand Lebesgue spaces

A. Turan GÜRKANLI*®

Department of Mathematics and Computer Science, Faculty of Science and Letters, İstanbul Arel University, Tepekent-Büyükçekmece İstanbul, Turkey

Received: 18.03.2018 • Accepted/Published Online: 20.10.2018 • Final Version: 27.11.2018

Abstract: Let (Ω, \sum, μ) and (Ω, \sum, v) be two finite measure spaces and let $L^{p),\theta}(\mu)$ and $L^{q),\theta}(v)$ be two generalized grand Lebesgue spaces [9,10], where $1 < p,q < \infty$ and $\theta \ge 0$. In Section 2 we discuss the inclusion properties of these spaces and investigate under what conditions $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ for two different measures μ and v. Let Ω be a bounded subset of \mathbb{R}^n . We know that the Lebesgue space $L^p(\mu)$ admits an approximate identity, bounded in $L^1(\mu)$, [5,8]. In Section 3 we investigate the approximate identities of $L^{p),\theta}(\mu)$ and show that it does not admit such an approximate identity. Later we discuss approximate identities of the space $[L^p]_{p),\theta}$, the closure of $C_c^{\infty}(\Omega)$ in $L^{p),\theta}(\mu)$, where $C_c^{\infty}(\Omega)$ denotes the space of infinitely differentiable complex-valued functions with compact support on \mathbb{R}^n .

Key words: Lebesgue space, grand Lebesgue space, generalized grand Lebesgue space

1. Introduction

Let (Ω, \sum, μ) be a measure space. It is well known that $\ell^p(\Omega) \subseteq \ell^q(\Omega)$ whenever $0 . Subramanian [19] investigated all positive measures <math>\mu$ on Ω for which $L^p(\mu) \subseteq L^q(\mu)$ whenever $0 . Romero [17] improved and completed some results of Subramanian. Miamee [13] considered the more general inclusion <math>L^p(\mu) \subseteq L^q(v)$, where μ and v are two measures. Gürkanlı [10] generalized these results to the Lorentz spaces.

Let Ω be a nonempty set, \sum a σ -algebra of subsets of Ω and μ a positive finite measure on the measurable space (Ω, \sum) . The grand Lebesgue space $L^{p)}(\mu)$ was introduced in [11]. This is a Banach space defined by the norm

$$||f||_{p} = \sup_{0 < \varepsilon \le p-1} \left(\varepsilon \int_{\Omega} |f|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}};$$

where $1 . For <math>0 < \varepsilon \le p-1$, $L^p(\mu) \subset L^{p)}(\mu) \subset L^{p-\varepsilon}(\mu)$ hold. For some properties and applications of $L^p(\mu)$ spaces we refer to papers [1-4,6,11]. A generalization of the grand Lebesgue spaces are the spaces

2010 AMS Mathematics Subject Classification: Primary 46E30; Secondary 46E35; 46B70

^{*}Correspondence: turangurkanli@arel.edu.tr

 $L^{p),\theta}(\mu)$, $\theta \geq 0$, defined by the norm (see [1,11])

$$||f||_{p),\theta,\mu} = ||f||_{p),\theta} = \sup_{0 < \varepsilon \le p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \left(\int_{\Omega} |f|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}} = \sup_{0 < \varepsilon \le p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} ||f||_{p-\varepsilon} < \infty;$$

when $\theta = 0$ the space $L^{p),0}(\mu)$ reduces to the Lebesgue space $L^p(\mu)$ and when $\theta = 1$ the space $L^{p),1}(\mu)$ reduces to the grand Lebesgue space $L^p(\mu)$. More precisely, we have for all $1 and <math>0 < \varepsilon \le p - 1$

$$L^{p}\left(\mu\right)\subset L^{p),\theta}\left(\mu\right)\subset L^{p-\varepsilon}\left(\mu\right).$$

Different properties and applications of these spaces were discussed in [1, 2, 6, 7, 9].

If μ and v are two measures on a σ -algebra \sum of subsets of Ω , we say that v is absolutely continuous with respect to μ if v(E)=0 for every $E\in\sum$ such that $\mu(E)=0$. We denote it by the symbol $v\ll\mu$. If μ and v are absolutely continuous with respect to each other (i.e $v\ll\mu$ and $\mu\ll v$) then we denote it by the symbol $\mu\approx v$.

Let A be a Banach algebra. A Banach space $(B, \|.\|_B)$ is called Banach module over $(A, \|.\|_A)$ if B is a module over A in the algebraic sense for some multiplication, $(a, b) \to a.b$, and satisfies

$$||a.b||_B \le ||a||_A ||b||_B$$
.

An approximate identity in a Banach algebra A is a net $(e_{\alpha})_{\alpha \in I} \subset A$ such that for every $f \in A$,

$$\lim_{\alpha} ||fe_{\alpha} - f|| = 0.$$

For two Banach modules B_1 and B_2 over a Banach algebra A, we write $M_A(B_1, B_2)$ or $Hom_A(B_1, B_2)$ for the space of all bounded linear operators T from B_1 into B_2 satisfying T(ab) = aT(b) for all $a \in A, b \in B_1$. These operators are called multipliers (right) or module homomorphism from B_1 into B_2 , [12, 14 - 16]. By Corollary 2.13 in [15],

$$Hom_A(B_1, B_2^*) \cong (B_1 \otimes_A B_2)^*$$
,

where B_2^* is the dual of B and \otimes_A is the A- module tensor product.

2. Inclusions of generalized grand Lebesgue spaces

In this section we will accept that $1 < p, q < \infty, \ \theta \ge 0$, and (Ω, \sum) is a measurable space and all measures are defined on the σ -algebra \sum .

Lemma 1 Let (Ω, \sum, μ) and (Ω, \sum, v) be two finite measure spaces. Then the inclusion $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ holds in the sense of equivalence classes if and only if μ and v are absolutely continuous with respect to each other (i.e. $\mu \approx v$) and $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ in the sense of individual functions.

Proof Suppose that $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ in the sense of equivalence classes. Let $f \in L^{p),\theta}(\mu)$ be any individual function. Then $f \in L^{p),\theta}(\mu)$ in the sense of equivalence classes. By assumption, $f \in L^{q),\theta}(v)$ in the sense of equivalence classes. This implies $f \in L^{q),\theta}(v)$ in the sense of individual functions. Then $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$

in the sense of individual functions. To show $v \ll \mu$, take any set $E \in \Sigma$ with $\mu(E) = 0$. Then $\chi_E = 0$, $\mu - a.e$, and it is in the equivalence classes of $0 \in L^p(\mu)$, where χ_E is the characteristic function of E. By the inclusion $L^p(\mu) \subseteq L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ in the sense of equivalence classes, we have $0 \in L^{q),\theta}(v)$. Then

$$\sup_{0<\varepsilon\leq q-1}\varepsilon^{\frac{\theta}{q-\varepsilon}}\left[v\left(E\right)\right]^{\frac{1}{q-\varepsilon}} = \sup_{0<\varepsilon\leq q-1}\varepsilon^{\frac{\theta}{q-\varepsilon}}\left\|\chi_{E}\right\|_{q-\varepsilon} = \left\|\chi_{E}\right\|_{q),\theta} = 0. \tag{1}$$

Since $L^{q),\theta}\left(v\right)\subset L^{q-\varepsilon}\left(v\right)$, there exists a constant C>0 such that

$$\|\chi_E\|_{p-\varepsilon} \leq C \|\chi_E\|_{q),\theta}$$
.

Then by (1) we have $\chi_E = 0$, v - a.e. Thus, v(E) = 0 and so $v \ll \mu$. Similarly, one can prove that $\mu \ll v$. The proof of the other direction is clear.

Theorem 1 Let (Ω, \sum, μ) and (Ω, \sum, v) be two finite measure spaces. Then $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ holds in the sense of equivalence classes if and only if $\mu \approx v$ and there exists a constant C(p,q) > 0 such that

$$||f||_{q),\theta,\nu} \le C(p,q) ||f||_{p),\theta,\mu}$$
 (2)

for all $f \in L^{p),\theta}(\mu)$.

Proof Assume that the inequality (2) is satisfied and $\mu \approx v$. By the inequality (2) the inclusion $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ holds in the sense of individual functions. Then by Lemma 1, the inclusion $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ holds in the sense of equivalence classes.

Conversely, assume that $L^{p),\theta}(\mu) \subseteq L^{q),\theta}(v)$ holds in the sense of equivalence classes. The grand Lebesgue space $L^{p),\theta}(\mu)$ is a Banach space with the sum norm

$$||f|| = ||f||_{p),\theta,\mu} + ||f||_{q),\theta,\upsilon}.$$

Indeed, if we get any Cauchy sequence $(f_n)_{n\in\mathbb{N}}$ in the normed space $(L^{p),\theta}(\mu), \|.\|)$, it is also a Cauchy sequence in the spaces $(L^{p),\theta}(\mu), \|.\|_{p),\theta,\mu}$ and $(L^{q),\theta}(v), \|.\|_{q),\theta,v}$. Then $(f_n)_{n\in\mathbb{N}}$ converges to functions f and g in spaces $L^{p),\theta}(\mu)$ and $L^{q),\theta}(v)$, respectively. Thus, one can find a subsequence (f_{n_i}) of (f_n) such that $f_{n_i} \to f$, $\mu - a.e$ and $f_{n_i} \to g$, v - a.e. Since v is absolutely continuous with respect to μ , then $f_{n_i} \to f$, v - a.e. Thus, f = g, v - a.e. Then (f_n) converges to f in the normed space $(L^{p),\theta}(\mu), \|.\|)$. Then the norms $\|.\|$ and $\|.\|_{p),\theta,\mu}$ are equivalent (see proposition 11, in [18]), and so there exists a constant C(p,q) > 0 such that

$$||f|| \le C(p,q) ||f||_{p),\theta,\mu}$$

for all $f \in L^{p),\theta}(\mu)$. This implies

$$||f||_{q),\theta,v} \le ||f|| \le C(p,q) ||f||_{p),\theta,\mu}$$

for all $f \in L^{p),\theta}(\mu)$. On the other hand, by Lemma 1, μ and v are absolutely continuous with respect to each other. This completes the proof.

Theorem 2 Let (Ω, \sum, μ) and (Ω, \sum, v) be two finite measure spaces. Then the following statements are equivalent.

- 1. We have $L^{p),\theta}(\mu) \subseteq L^{p),\theta}(v)$ for p > 1 and for all $\theta \ge 0$.
- 2. $\mu \approx v$ and there exists a constant $C(p,\theta) > 0$ such that

$$\sup_{0<\varepsilon\leq q-1}\left(\upsilon\left(E\right)\right)^{\frac{1}{p-\varepsilon}}\leq C\left(p,\theta\right)\sup_{0<\varepsilon\leq p-1}\left(\mu\left(E\right)\right)^{\frac{1}{p-\varepsilon}}$$

for all $E \in \sum$.

- 3. $L^{1}(\mu) \subseteq L^{1}(\nu)$.
- 4. $L^{p),\theta}(\mu) \subseteq L^{p),\theta}(v)$ for p > 1 and for all $\theta \ge 0$.

Proof (1) \Longrightarrow (2): By Theorem 1, $\mu \approx v$ and there exists $C(p,\theta) > 0$ such that

$$||f||_{p),\theta,\upsilon} \le C(p,\theta) ||f||_{p),\theta,\mu}$$
 (3)

for all $f \in L^{p),\theta}(\mu)$. If $E \in \sum$, then $\chi_E \in L^p(\mu)$. Since $L^p(\mu) \subset L^{p),\theta}(\mu) \subset L^{p),\theta}(\nu)$, then $\chi_E \in L^{p),\theta}(\mu) \subset L^{p),\theta}(\nu)$ and by (3) we have

$$\|\chi_E\|_{p),\theta,\upsilon} \le C(p,\theta) \|\chi_E\|_{p),\theta,\mu}. \tag{4}$$

Thus,

$$\sup_{0<\varepsilon\leq p-1}\left(\varepsilon^{\theta}\upsilon\left(E\right)\right)^{\frac{1}{p-\varepsilon}}\leq C\left(p,\theta\right)\sup_{0<\varepsilon\leq p-1}\left(\varepsilon^{\theta}\mu\left(E\right)\right)^{\frac{1}{p-\varepsilon}}.\tag{5}$$

(2) \Longrightarrow (3): Since when $\theta = 0$, the space $L^{p),\theta}(\mu)$ reduces to the Lebesgue space $L^{p}(\mu)$, by (5),

$$(v(E))^{\frac{1}{p}} \le C(p,0) (\mu(E))^{\frac{1}{p}} = C(p) (\mu(E))^{\frac{1}{p}}.$$

This implies

$$v\left(E\right) \le M\mu\left(E\right),\tag{6}$$

where $M = C(p)^p$. Then by Proposition 1 in [13], we have $L^1(\mu) \subseteq L^1(v)$.

(3) \Longrightarrow (4): By the inclusion $L^{1}(\mu) \subseteq L^{1}(v)$ there exists $C_{1} > 0$ such that

$$||g||_{1,v} \le C_1 ||g||_{1,u} \tag{7}$$

for all $g \in L^1(\mu)$. Let $f \in L^{p),\theta}(\mu)$. Then

$$||f||_{p),\theta,\mu} = \sup_{0<\varepsilon \le p-1} \left(\varepsilon^{\theta} \int_{\Omega} |f|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}} < M$$

for some M>0. This implies $|f|^{p-\varepsilon}\in L^1\left(\mu\right)$ for all $\varepsilon\in(0,p-1]$. Since $L^1\left(\mu\right)\subseteq L^1\left(\upsilon\right)$, then $|f|^{p-\varepsilon}\in L^1\left(\upsilon\right)$. By (7) we have

$$\int_{\Omega} |f|^{p-\varepsilon} d\nu \le C_1 \int_{\Omega} |f|^{p-\varepsilon} d\mu.$$

Thus, we obtain

$$\left(\int\limits_{\Omega}|f|^{p-\varepsilon}\,dv\right)^{\frac{1}{p-\varepsilon}}\leq C\left(\int\limits_{\Omega}|f|^{p-\varepsilon}\,d\mu\right)^{\frac{1}{p-\varepsilon}},$$

where $C = C_1^{\frac{1}{p-\varepsilon}}$. If we get the supremum in both sides, we have

$$\sup_{0<\varepsilon\leq p-1}\left(\varepsilon^{\theta}\int\limits_{\Omega}\left|f\right|^{p-\varepsilon}dv\right)^{\frac{1}{p-\varepsilon}}\leq C\sup_{0<\varepsilon\leq p-1}\left(\varepsilon^{\theta}\int\limits_{\Omega}\left|f\right|^{p-\varepsilon}d\mu\right)^{\frac{1}{p-\varepsilon}},$$

for all $\theta \geq 0$. Then

$$||f||_{p_{1},\theta,v} \le C ||f||_{p_{1},\theta,\mu} < CM < \infty$$

for all $f \in L^{p),\theta}(\mu)$. Finally, we have $L^{p),\theta}(\mu) \subseteq L^{p),\theta}(\upsilon)$ for all $\theta \geq 0$.

$$(4) \implies (1)$$
: This is easy.

Theorem 3 Let (Ω, \sum, μ) be a finite measure space and let p and q be any two positive real numbers. Then

$$L^{p),\theta}(\mu) \subseteq L^{q),\theta}(\mu) \tag{8}$$

whenever 1 < q < p, and for all $\theta \ge 0$.

Proof Since for every $0 < \varepsilon \le q - 1$, we have $q - \varepsilon , then <math>L^{p-\varepsilon}(\mu) \subset L^{q-\varepsilon}(\mu)$. Thus, there exists C > 0 such that

$$||f||_{q-\varepsilon} \le C ||f||_{p-\varepsilon}$$

for all $f \in L^{p),\theta}(\mu)$. Let $f \in L^{p),\theta}(\mu)$. We have

$$\begin{split} \|f\|_{q),\theta,\mu} &= \sup_{0<\varepsilon \leq q-1} \left(\varepsilon^{\theta} \int_{\Omega} |f|^{q-\varepsilon} \, d\mu \right)^{\frac{1}{q-\varepsilon}} = \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}} \|f\|_{q-\varepsilon} \\ &\leq C \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}} \|f\|_{p-\varepsilon} = C \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{q-\varepsilon}} \varepsilon^{\frac{\theta}{p-\varepsilon}} \varepsilon^{\frac{-\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} \\ &= C \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} \\ &\leq C \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}} \sup_{0<\varepsilon \leq q-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} \\ &\leq C_0 \sup_{0<\varepsilon \leq p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} = C_0 \|f\|_{p),\theta,\mu} \,, \end{split}$$

where $C_0 = C \sup_{0 < \varepsilon \le q-1} \varepsilon^{\frac{\theta(p-q)}{(p-\varepsilon)(q-\varepsilon)}}$. Since q < p, C_0 is finite and thus $f \in L^{q),\theta}(\mu)$. Hence,

$$L^{p),\theta}\left(\mu\right)\subseteq L^{q),\theta}\left(\mu\right)$$

whenever p < q, and for all $\theta \ge 0$.

3. Approximate identities and consequences

In this section we will assume that Ω is a bounded subset of \mathbb{R}^n and $1 < p, q < \infty, \ \theta \ge 0$.

We know that $C_c^{\infty}(\Omega)$ is not dense in $L^{p),\theta}(\mu)$, where $C_c^{\infty}(\Omega)$ denotes the space of infinitely differentiable complex-valued functions with compact support on $\Omega[9]$. Its closure $[L^p]_{p),\theta}$ consists of functions $f \in L^{p),\theta}(\mu)$ such that

$$\lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} = 0.$$

It is known that the Lebesgue space $L^p(\mu)$ admits an approximate identity bounded in $L^1(\mu)$ [5,8]. The following theorem shows that the this property is not true for generalized grand Lebesgue space.

Theorem 4 The generalized grand Lebesgue space $L^{p),\theta}(\mu)$ does not admit an approximate identity, bounded in $L^{1}(\mu)$.

Proof Assume that $(e_{\alpha})_{\alpha \in I}$ is an approximate identity in $L^{p),\theta}(\mu)$ bounded in $L^{1}(\mu)$. Then there exists a constant M>0 such that $\|e_{\alpha}\|_{1} < M$ for all $\alpha \in I$. Take any function $f \in L^{p),\theta}(\mu) - [L^{p}]_{p),\theta}$ (for example the function $f(t) = x^{-\frac{1}{p}}$, $1). Then <math>e_{\alpha} * f \to f$ in $L^{p),\theta}(\mu)$. Since

$$\lim_{\varepsilon \to 0} \left(\varepsilon^{\theta} \int_{\Omega} |e_{\alpha} * f|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}} = \lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|e_{\alpha} * f\|_{p-\varepsilon}$$

$$\leq \lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|e_{\alpha}\|_{1} \|f\|_{p-\varepsilon}$$

$$\leq M \lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{p-\varepsilon} = 0,$$

then $e_{\alpha} * f \in [L^p]_{p),\theta}$ for each $\alpha \in I$. This implies $f \in [L^p]_{p),\theta}$. This contradicts the assumption $f \in L^{p),\theta}(\mu) - [L^p]_{p),\theta}$. Then $L^{p),\theta}(\mu)$ does not admit an approximate identity bounded in $L^1(\mu)$.

Theorem 5 a. The generalized grand Lebesgue space $L^{p),\theta}(\mu)$ is a Banach convolution module over $L^{1}(\mu)$.

b. The space $[L^{p}]_{p),\theta}$ is a Banach convolution module over $L^{1}\left(\mu\right)$.

Proof a. We know that $L^{p),\theta}(\mu)$ is a Banach space [9], and $L^{p}(\mu)$ is a Banach $L^{1}(\mu)$ -module. Let $f \in L^{1}(\mu)$ and $g \in L^{p),\theta}(\mu)$. Then

$$\|f * g\|_{p),\theta} = \sup_{0 < \varepsilon \le p-1} \left(\varepsilon^{\theta} \int_{\Omega} |f * g|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}}$$

$$= \sup_{0 < \varepsilon \le p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f * g\|_{p-\varepsilon} \le \sup_{0 < \varepsilon \le p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|f\|_{1} \|g\|_{p-\varepsilon}$$

$$= \|f\|_{1} \sup_{0 < \varepsilon \le p-1} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|g\|_{p-\varepsilon} = \|f\|_{1} \|g\|_{p),\theta}.$$

$$(9)$$

It is easy to prove the other conditions for $L^{p),\theta}(\mu)$ to be a Banach convolution module over $L^{1}(\mu)$.

b. It is easy to see that $[L^p]_{p),\theta}$ is a vector space. Since $[L^p]_{p),\theta} \subset L^{p),\theta}(\mu)$ is closed in $L^{p),\theta}(\mu)$, and $L^{p),\theta}(\mu)$ is a Banach space, then $[L^p]_{p),\theta}$ is a Banach space. The inequality (9) is satisfied for all $f \in L^1(\mu)$ and $g \in [L^p]_{p),\theta}$. Then $[L^p]_{p),\theta}$ is a Banach $L^1(\mu)$ module.

Theorem 6 a. The space $[L^p]_{p),\theta}$ admits an approximate identity bounded in $L^1(\mu)$.

b. $[L^p]_{p),\theta}$ admits an approximate identity bounded in $L^1(\mu)$ and with compactly supported Fourier transforms.

Proof First we shall prove that the closure of $L^{p}(\mu)$ in $L^{p),\theta}(\mu)$ is $[L^{p}]_{p),\theta}$. Let $h \in L^{p}(\mu)$ be given. Since $L^{p}(\mu) \subset L^{p),\theta}(\mu) \subset L^{p-\varepsilon}(\mu)$, then

$$\lim_{\varepsilon \to 0} \left(\varepsilon^{\theta} \int_{\Omega} |h|^{p-\varepsilon} d\mu \right)^{\frac{1}{p-\varepsilon}} = \lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} \|h\|_{p-\varepsilon} = 0.$$

Hence, $h \in [L^p]_{p),\theta}$. This implies

$$L^p(\mu) \subset [L^p]_{p),\theta}$$
.

Since

$$C_c^{\infty}\left(\mathbb{R}^n\right) \subset L^p\left(\mu\right) \subset [L^p]_{p),\theta}$$
, (10)

we have

$$[L^{p}]_{^{p),\theta}}=\overline{C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}\subset\overline{L^{p}\left(\mu\right)}\subset\left[L^{p}\right]_{^{p),\theta}}\;,$$

where the closures are in the norm $\|.\|_{p,\theta,u}$. Then

$$\overline{L^{p}(\mu)} = \overline{C_{c}^{\infty}(\mathbb{R}^{n})} = [L^{p}]_{p),\theta}. \tag{11}$$

It is known by Lemma 1.12 in [8] that $L^p(\mu)$ admits an approximate identity $(e)_{\alpha \in I}$, bounded in $L^1(\mu)$. Then there exists a constant M > 1, such that $\|e_\alpha\|_1 \leq M$ for all $\alpha \in I$. Also, given any $u \in L^p(\mu)$ and $\delta > 0$, there exists $\alpha_0 \in I$ such that

$$\|e_{\alpha} * u - u\|_{p} \le \frac{\delta}{3} \tag{12}$$

for all $\alpha \geq \alpha_0$. We shall show that $(e)_{\alpha \in I}$ is also an approximate identity in $[L^p]_{p),\theta}$. Let $f \in [L^p]_{p),\theta}$ be given. Since $L^p(\mu)$ is dense in $[L^p]_{p),\theta}$, in the norm $\|.\|_{p),\theta}$, there exists $g \in L^p(\mu)$ such that

$$||f - g||_{p),\theta} \le \frac{\delta}{3M}.\tag{13}$$

Then

$$||e_{\alpha} * f - f||_{p),\theta} = ||e_{\alpha} * f - f - e_{\alpha} * g + e_{\alpha} * g + g - g||_{p),\theta}$$

$$\leq ||e_{\alpha} * f - e_{\alpha} * g||_{p),\theta} + ||e_{\alpha} * g - g||_{p),\theta} + ||g - f||_{p),\theta},$$
(14)

and

$$\|e_{\alpha} * f - e_{\alpha} * g\|_{p),\theta} = \|e_{\alpha} * (f - g)\|_{p),\theta}$$

$$\leq \|e_{\alpha}\|_{1} \|(f - g)\|_{p),\theta} \leq M \|(f - g)\|_{p),\theta} \leq M \frac{\delta}{3M} = \frac{\delta}{3}.$$
(15)

Since M > 1, combining (12) (13), (14), and (15), we obtain

$$\|e_{\alpha} * f - f\|_{p),\theta} \le \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3M} < \delta.$$

This completes the proof of part (a). The proof of part (b) is obvious.

As an application of the approximate identities we will give the following theorem.

Theorem 7 a) The space of multipliers $M\left(L^1\left(\mu\right),\left([L^p]_{p),\theta}\right)^*\right)$ is isometrically isomorphic to dual space $\left([L^p]_{p),\theta}\right)^*$ (dual of $[L^p]_{p),\theta}$).

b) The space of multipliers $M\left(L^{1}\left(\mu\right),\left(L^{p),\theta}\left(\mu\right)\right)^{*}\right)$ is isometrically isomorphic to the dual space $\left(L^{1}\left(\mu\right)*L^{p),\theta}\left(\mu\right)\right)^{*}$. If f is an element in the space of multipliers $M\left(L^{1}\left(\mu\right),\left(L^{p),\theta}\left(\mu\right)\right)^{*}\right)$, then there is an extension F of f to a continuous linear form on $L^{p),\theta}\left(\mu\right)$ so that

$$\left\| F \mid \left(L^{p),\theta} \left(\mu \right) \right)^* \right\| = \left\| f \mid \left(L^1 \left(\mu \right) * L^{p),\theta} \left(\mu \right) \right)^* \right\|,$$

where $\left\|F\mid\left(L^{p),\theta}\left(\mu\right)\right)^{*}\right\|$ and $\left\|f\mid\left(L^{1}\left(\mu\right)*L^{p),\theta}\left(\mu\right)\right)^{*}\right\|$ denote the norms on the spaces $\left(L^{p),\theta}\left(\mu\right)\right)^{*}$ and $\left(L^{1}\left(\mu\right)*L^{p),\theta}\left(\mu\right)\right)^{*}$, respectively.

Proof a) We know by Theorem 5 that $[L^p]_{p),\theta}$ is a Banach $L^1(\mu)$ – module. Also, by Theorem 6, $L^1(\mu)$ * $[L^p]_{p),\theta}$ is dense in $[L^p]_{p),\theta}$ in the $\|.\|_{p),\theta,\mu}$ norm. Then by the module factorization theorem [20], we have

$$L^{1}(\mu) * [L^{p}]_{p),\theta} = [L^{p}]_{p),\theta}.$$
(16)

Thus, $[L^p]_{p),\theta}$ is an essential Banach module over $L^1(\mu)$. Then by Corollary 2.13 in [15], and by (16) we obtain

$$M\left(L^{1}\left(\mu\right),\left([L^{p}]_{{\scriptscriptstyle p}),\theta}\right)^{*}\right)=\left(L^{1}\left(\mu\right)*[L^{p}]_{{\scriptscriptstyle p}),\theta}\right)^{*}=\left([L^{p}]_{{\scriptscriptstyle p}),\theta}\right)^{*}.$$

b) Again by Corollary 2.13 in [15],

$$M\left(L^{1}\left(\mu\right),\left(L^{p),\theta}\left(\mu\right)\right)^{*}\right)=\left(L^{1}\left(\mu\right)*L^{p),\theta}\left(\mu\right)\right)^{*}.$$

On the other hand, by Theorem 5, $L^{p),\theta}(\mu)$ is a Banach $L^{1}(\mu)$ – convolution module. Thus, $L^{1}(\mu)*L^{p),\theta}(\mu) \subset L^{p),\theta}(\mu)$. Then if $f \in M\left(L^{1}(\mu),\left(L^{p),\theta}(\mu)\right)^{*}\right)$, by the Hahn–Banach extension theorem, there is an extension F of f to a continuous linear form on $L^{p),\theta}(\mu)$ so that $\left\|F\mid\left(L^{p),\theta}(\mu)\right)^{*}\right\|=\left\|f\mid\left(L^{1}(\mu)*L^{p),\theta}(\mu)\right)^{*}\right\|$. This completes the proof.

GÜRKANLI/Turk J Math

References

- [1] Capone C, Formica MR, Giova R. Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal 2013; 85: 125 131.
- [2] Castillo RE, Raferio H. Inequalities with conjugate exponents in grand Lebesgue spaces. Hacettepe Journal of Mathematics and Statistics 2015; 44: 33 39.
- [3] Castillo RE, Raferio H. An Introductory Course in Lebesgue Spaces. Zurich, Switzerland: Springer International Publishing, 2016.
- [4] Danelia N, Kokilashvili V. On the approximation of periodic functions within the frame of grand Lebesgue spaces. Bulletin of the Georgian National Academy of Sciences 2012;6:11-16.
- [5] Doran RS, Wichmann J. Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics, 768. Berlin, Germany: Springer-Verlag, 1979.
- [6] Fiorenza A, Karadzhov GE. Grand and small Lebesgue spaces and their analogs. Journal for Analysis and its Applications 2004; 23: 657 681.
- [7] Fiorenza A. Duality and reflexity in grand Lebesgue spaces. Collect Math 2000; 51: 131 148.
- [8] Fischer RH, Gürkanlı AT, Liu TS. On a family of weighted spaces. Math Slovaca 1966; 46 71 82.
- [9] Greco L, Iwaniec T, Sbordone C. Inverting the p-harmonic operator. Manuscripta Math 1997; 92: 259 272.
- [10] Gürkanlı AT. On the inclusion of some Lorentz spaces. J Math Kyoto Univ 2004; 44: 441 450.
- [11] Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypotheses. Arc Rational Mech Anal 1992; 119: 129-143.
- [12] Larsen L. Introduction to the Theory of Multipliers. Berlin, Germany: Springer Verlag, 1971.
- [13] Miamee AG. The inclusion $L^{p}(\mu) \subset L^{q}(\nu)$. Am Math Mon 1991; 98: 342 345.
- [14] Öztop S, Gürkanlı AT. Multipliers and tensor products of weighted L^p -spaces. Acta Math Sci 2001; 21B: 41-49.
- [15] Rieffel MA. Induced Banach representation of Banach algebras and locally compact groups. J Funct Anal 1967; 1: 443-491.
- [16] Rieffel MA. Multipliers and tensor product of L^p spaces of locally compact groups. Studia Math 1969; 33: 71 82.
- [17] Romero JL. When is $L^p(\mu)$ contained in $L^q(\mu)$? Am Math Mon 1983; 90: 203 206.
- [18] Royden HL. Real Analysis. New York, NY, USA: Macmillan Publishing, 1968.
- [19] Subramanian B. On the inclusion $L^{p}(\mu) \subseteq L^{q}(\mu)$. Am Math Mon 1978; 85: 479 481.
- [20] Wang HC. Homogeneous Banach Algebras. New York, NY, USA: Marcel Dekker Inc., 1977.