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Because the commonly adopted viewpoint that the Keldysh parameter v determines the dynamical
regime in strong field physics has long been demonstrated to be misleading, one can ask what
happens as relevant physical parameters, such as laser intensity and frequency, are varied while =
is kept fixed. We present results from our one- and fully three-dimensional quantum simulations
of high-order harmonic generation (HHG) from various bound states of hydrogen with n up to 40,
where the laser intensities and the frequencies are scaled from those for n = 1 in order to maintain
a fixed Keldysh parameter y< 1 for all n. We find that as we increase n while keeping = fixed, the
position of the cut-off scales in well defined manner. Moreover, a secondary plateau forms with a new
cut-off, splitting the HHG plateau into two regions. First of these sub-plateaus is composed of lower
harmonics, and has a higher yield than the second one. The latter extends up to the semiclassical
I, 4+ 3.17U, cut-off. We find that this structure is universal, and the HHG spectra look the same for
all n 2 10 when plotted as a function of the scaled harmonic order. We investigate the n-, I- and
momentum distributions to elucidate the physical mechanism leading to this universal structure.

PACS numbers: 32.80.Rm, 42.65.Ky, 32.80.Ee

I. INTRODUCTION

High harmonic generation (HHG) is a nonlinear phe-
nomenon in which atoms interacting with an intense laser
pulse emit photons whose frequencies are integer multi-
ples of the driving laser frequency. The emphatic moti-
vation is the generation of spatially and temporally co-
herent bursts of attosecond pulses with high frequencies
covering a range from vacuum ultraviolet (VUV) to the
soft x-ray region [I]. Filtering the high-frequency part of
a high-harmonic spectrum allows the syntheses of ultra-
short, coherent light pulses with energies in the extreme
ultraviolet (XUV) part of the spectrum. This allows for
tracing and controlling electronic processes in atoms, as
well as coupled vibrational and electronic processes in
molecules [2] [B]. Some of the most visible applications of
ultrashort pulses of attosecond duration involve resolv-
ing the electronic structure with high degree of spatial
and temporal resolution [4], controlling the dynamics in
the XUV-pumped excited molecules [5], and exciting and
probing inner-shell electron dynamics with high resolu-
tion [6]. Time-resolved holography [7], imaging of molec-
ular orbitals [3], and attosecond streaking [8] are also
among the state-of-the-art applications of HHG.

High-order harmonic generation is a process well de-
scribed within the semi-classical three step model (ion-
ization, propagation followed by recombination). The
plateau region, where consecutive harmonics have ap-
proximately the same intensity, constitutes the main
body of a high-harmonic spectrum. First step of the
three step model is the tunneling of the electron through
the Coulomb potential barrier suppressed by the laser
field. The second step is laser-driven propagation of the
free electron, and the third step is the rescattering of the

electron with its parent ion. During this last step, the
electron can recombine with its parent ion and liberate
its excess energy as a short wavelength harmonic photon.
The three step model predicts that the highest kinetic
energy that an electron gains during its laser-driven ex-
cursion is given by 3.17U,, where U, = F?/(4w?) is the
quiver energy of the free electron in the laser field, and F'
and wg are the laser field amplitude and frequency. The
highest harmonic frequency, w,, that can be generated
within this model is gmaxwo = |Ep| + 3.17U,, where |Ej|
is the binding energy of electron in the atom and gpax iS
the order of the cut-off harmonic [9].

A crucial assumption in this physical picture is that the
electron tunnels into the continuum in the first step in a
laser field characterized by a small Keldysh parameter.
This liberates the electron with no excess kinetic energy,
and its subsequent excursion is driven by the classical
laser field alone. Keldysh parameter « is commonly used
to refer to one of the two dominant ionization dynamics in
strong fields; tunneling or multiphoton regimes [22]. It is
defined as the the time it takes for the electron to tunnel
the barrier in units of the laser period, i.e., v ~ 7/T.
Here 7 is the tunneling time and T = 27 /wy is the laser
period. If the tunneling time is much smaller than the
laser period, one could expect that it is likely for the
electron to tunnel through the barrier. In contrast, if
tunneling time is much longer than the laser period, then
the electron doesn’t have enough time tunnel through the
depressed Coulomb barrier, and ionization can only occur
through photon absorption. The Keldysh parameter can

be expressed as v = wo+/2 |Ep|/F [22].

Although the Keldysh parameter is widely used to re-
fer to the underlying dynamics in strong field ionization,
there are studies which suggest that it is an inadequate



parameter in making this assessment [TTHI3] when a large
range of laser frequencies are considered. Thus, it is nat-
ural to ask what happens in the strong field ionization
step of HHG as a function of n, as relevant parameters,
such as laser intensity and frequency, are varied while -y is
kept fixed. In this paper, we investigate the HHG process
from the ground and the Rydberg states of a hydrogen
atom using a one-dimensional s-wave model supported
by fully three-dimensional quantum simulations. The
central idea is that in a hydrogen atom, both the field
strength F' and the frequency wg scale in a particular
fashion with the principal quantum number n. Scaling
the field strength by 1/n* and the frequency by 1/n3, it
is evident that v = wg+/2|Ep|/F remains unaffected as
n is changed, provided that both F' and wy are scaled
accordingly while n is varied.

In the spirit of the Keldysh theory, going beyond the
ground state and starting from higher n as the initial
state, scaling F' and wp to maintain a fixed value of ~
should keep the ionization step of the harmonic genera-
tion in the same dynamical regime. We calculate HHG
spectra starting from the ground state of hydrogen us-
ing laser parameters for which v < 1 (tunneling), and
then calculate the high-harmonic spectra from increas-
ingly larger n-states, scaling F' and wq from the ground
state simulations and keep + fixed. If the Keldysh param-
eter is indeed adequate in referring to the ionization step
properly in HHG, one should expect that the physics of
the three-step process would remain unchanged, as the
remainder of the steps involve only classical propagation
of the electron in the continuum, and the final recom-
bination step, which is governed by the conservation of
energy.

There are a number of studies devoted to HHG from
Rydberg atoms. The main motivation in these efforts are
primarily increasing the conversion efficiency in the har-
monic generation to obtain higher yields, which in turn
would enable the generation of more intense attosecond
pulses. Hu et al. [T4] demonstrated that, by stabilization
of excited outer electron of the Rydberg atom in an in-
tense field, a highly efficient harmonic spectrum could be
generated from the more strongly bound inner electrons.
In another recent study, Zhai et al. [I5], [16] proposed
that an enhanced harmonic spectrum is possible if the
initial state is prepared as a superposition of the ground
and the first excited state. The idea behind this method
is that when coupled with the ground state, ionization
can occur out of the excited state, initiating the har-
monic generation. Since the excited state has lower ion-
ization potential than the ground state, this in principle
can result in higher conversion efficiency if the electron
subsequently recombines into the excited state. In this
scenario, the high-harmonic plateau would still cut-off at
the semiclassical limit I, + 3.17U, with I,, being that of
the excited state. If, however, upon ionization out of the
excited state, the electron recombines into the ground
state, the cut-off can be pushed up to higher harmon-
ics. Same principle is also at play in numerous studies

proposing two-color driving schemes for HHG, with one
frequency component serving to excite the ground state
up to an excited level with a lower ionization potential,
thus increasing the ionization yield (see for example [17]).
In this paper, we report HHG spectra from ground
and various Rydberg states with n up to 40 for hydro-
gen atom, where the laser intensity and the frequency
are such that the ionization step occurs predominantly
in the tunneling regime. Starting with v = 0.755 at
n = 1, we go up in n of the initial state and scale F'
by 1/n* and wy by 1/n?, keeping y constant. We discuss
the underlying mechanism in terms of field ionization and
final n-distributions after the laser pulse. We find that
the harmonic order of the cut-off predicted by the semi-
classical three-step model scales as 1/n when F' and wy
are scaled as described above, and +y is kept fixed. We re-
peat some of these model simulations by solving the fully
three-dimensional time-dependent Schrédinger equation
to investigate the effects which may arise due to angular
momenta in high-n manifolds. For select initial n states,
we look at momentum distributions of the ionized elec-
trons, and the wave function extending beyond the peak
of the depressed Coulomb potential at 1/v/F. Unless
otherwise stated, we use atomic units throughout.

II. ONE-DIMENSIONAL CALCULATIONS

The time-dependent Schrédinger equation of an elec-
tron interacting with the proton and the laser field F(t)
in the s-wave model in length gauge reads
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In our simulations, time runs from —¢; to ¢;. This choice

of time range centers the carrier envelope of the laser at

t = 0, which simplifies its mathematical expression. We

choose the time-dependence of the electric field F(t) to

be

F(t) = Fyexp(—(41n2)t?/72) cos(wot), (2)

where Fj is the peak field strength, wg is the laser fre-
quency and 7 is the field duration at FWHM. Our one
dimensional model is an s-wave model and restricted to
the half space r > 0 with a hard wall at » = 0. Having
a hard wall at » = 0 when there is no angular momen-
tum can potentially be problematic, because the electron
can absorb energy from the hard wall when using —1/r
potential. However, we believe that this model is ade-
quate for the problem at hand, because we are deep in
the tunneling regime. In our calculations, the number of
photons required for ionization to occur through photon
absroption is ~9 for n = 1, approaches to 71 by n = 10
and stays so for higher n. As a result, ionization takes
place primarily in the tunneling regime. If an extra pho-
ton is absorbed at the hard wall, its effect would mostly



concern the lowest harmonics, which we are not inter-
ested in. In Sec. [[TT, we show that the results we obtain
in this section are consistent with our findings from fully
three-dimensional calculations.

We consider cases in which the electron is initially pre-
pared in an ns state, where n ranges from 1 up to 40.
Our pulse duration is 4-cycles at FWHM for each case,
and the wavelength of the laser field is 800 nm for the
ground state. This gives a 2.7 fs optical cycle when the
wavelength is 800 nm. Thus, the total pulse duration 7
for the ground state is ~11 fs and it scales as n®. For the
4s state, this results in a pulse duration of ~704 fs, while
it amounts to ~5.6 ps for the 8s state.

For the numerical solution of equation , we perform
a series of calculations to make sure that the mesh and
box size of the radial grid and the time step we use are
fine enough so that our results are converged to within
a few per cent. As we go beyond the 1s state, we in-
crease the radial box size to accommodate the growing
size of the initial state and the interaction region. We
propagate Eq. for excited states using a square-root
mesh of the form j28r, where j is the index of a radial
grid point, 67 = R/N?, R is the box size, and N is the
number of grid points. This type of grid is more effi-
cient than using a uniform mesh in problems involving
Rydberg states [18], because it puts roughly the same
number of points between the successive nodes of a Ryd-
berg state. For the ground state, the box size is R = 750
a.u. and N = 800, which gives dr = 0.0012 a.u.. For ex-
cited states, the box size grows ~ n? and with a proper
selection of dr, we make sure that the dispersion relation
kér = 0.5 holds for each n state, where k is the maxi-
mum electron momentum acquired from the laser field:
k= V2Emnax and Epax = 3.170,.

The time propagation of the wave-function is carried
out using an implicit scheme. For the temporal grid spac-
ing 6t, we use n3 /180 of a Rydberg period, which is small
enough to give converged results. A smooth mask func-
tion which varies from 1 to 0 starting from 2/3 of the
way between the origin and the box boundary is multi-
plied with the solution of equation at each time step
to avoid spurious reflections from the box boundaries.

The time-dependent solutions of equation are ob-
tained for each initial ns state, which we then use to
calculate the time-dependent dipole acceleration, a(t) =

() (1):
a(t) = ((rt) [H, [H,r]} [{(r,1)) . 3)

Because the harmonic power spectrum is proportional to
the Fourier transform of the squared dipole acceleration,
we report |a(w)|? for harmonic spectra.

The initial wave function is normalized to unity, and
the time-dependent ionization probability is calculated
as the remaining norm inside the spatial box at a given
time ¢,

R

P(t)=1- / o (r, t)|*dr. (4)
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In evaluation of the ionization probability, we propagate
the wavefunction long enough after the pulse is turned
off until P(¢) converges to a time-independent value.

A. Results and discussion

In our one-dimensional simulations, we consider cases
where the atom is initially in an ns state with n up to
40. The laser parameters are critically chosen so that
the Keldysh parameter is fixed at v = 0.755 for each
initial n, and the scaled frequency of the laser field is
won® < 1, i.e., the electric field has a slowly varying
time-dependence compared with the Kepler period Tk =
2mn3 of the Rydberg electron. For example, for an 800
nm laser, an optical cycle is ~18 times the Kepler period
for n = 1. The cut-off frequency w,. predicted by the
three-step model is w, = |Ep| + 3.17U, [9], where U, =
F? /402 is the ponderomotive potential. Since |E|, F
and wyp scale as n=2, n~* and n~3 respectively, the cut-
off frequency w, scales as n~2 and the harmonic order of
the cut-off gmax = we/wo scales as n for fixed ~.

Harmonic spectra from these simulations are seen in
Fig. |1] (a)-(d) as a function of the scaled harmonic or-
der ¢ = g/n, where ¢ = w/wy is the harmonic order. In
Fig. [1] (a), the scaled laser intensity and the wavelength
are 200/n® TW /cm? and 800n® nm, which correspond to
v = 0.755. The most prominent feature in these spec-
tra is a clear double plateau structure, exhibiting one
plateau with a higher yield and another following with
lower yield. The second plateau terminates at the usual
semiclassical cut-off. These plateaus are connected with
a secondary cut-off, which converges to a fixed scaled
harmonic order ¢ = g/n as n becomes large.

We also note that the overall size of |a(w)|* drops sig-
nificantly with increasing n in Fig. [1| (a). For example,
going from n = 2 to n = 4, |a(w)|? drops about 3 orders
of magnitude, and from n = 4 to n = 8 it drops roughly
4 orders of magnitude. The spectrum obtained for n = 8
is about 9 orders of magnitude lower than that for n = 1.
Beyond n = 8, the overall sizes of the spectra are too
small and plagued by numerical errors, which is why we
stop at n = 8 in panel (a). This is because the am-
plitude of the wave function component contributing to
the three-step process is too small to yield a meaningful
spectrum within our numerical precision. In order to en-
sure sizable HHG spectra while climbing up higher in n,
we adopt the following procedure: We split the Rydberg
series into different groups of initial n-states, which are
subject to different laser parameters but have the same
~ value within themselves. Within each group, we climb
up in n by scaling the laser parameters for the lowest n
in the group until |a(w)|?> becomes too small. We then
move onto the next group of n-states, increasing the laser
intensity and the frequency (v o< w/F') for the lowest n
in the group while attaining the same v as in the pre-
vious n-groups. Scaling this intensity and frequency, we
continue to climb up in n until again |a(w)|? becomes too
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small, at which point we terminate the group and move
onto the next.

Following this procedure, we are able to achieve HHG
spectra for states up to n = 40 in Fig. The first n-
group in panel (a) includes states between n = 1—8, and
the laser intensity and wavelength are 200/n® TW /cm?
and 800n® nm. In panel (b) is the second group with
n = 10 — 18 and the laser parameters 300/n% TW /cm?
and 652n3 nm. In panel (c), n = 20—28 and the laser pa-
rameters are 400/n® TW /cm? and 566n° nm, and finally
in panel (d), n = 30 — 40 with intensity and wavelength
470/n® TW /ecm? and 522n3 nm. The peak field strengths
corresponding to these intensities are lower than the crit-
ical field strengths for above-the-barrier ionization for
the states we consider, and the ionization predominantly
takes place in the tunneling regime.

The dipole accelerations at the two cut-off harmonics
for each n-group seen in Fig. [1| (a)-(d) are plotted in the
upper two panels of Fig. Here, we plot |a(w)|? as a
function of n. This figure points to a situation in which
|a(w)|? drops with increasing n within each group of n.
Also, for the first few n-groups, |a(w)|? drops much faster
compared to those involving higher n. The reason for the
decreasing |a(w)|? within each n-group in Fig. 2| can be
understood by calculating the ionization probabilities in
each case, and examining how it changes as n is varied.

Although completely ionized electrons do not con-
tribute to the HHG process, ionization and HHG are two
competing processes in the tunneling regime. As a re-
sult, decrease in one alludes to decrease in the other.
The ionization probabilities from the ns states in Fig.
are plotted against their principal quantum numbers in
the lowest panel of Fig. It is clear that as we go be-
yond the ground state, the ionization probabilities drop
significantly as n is increased within each group. This
decrease is rather sharp for the first group and it levels
off as we go to successive groups involving higher n. The
values of the scaled frequencies 2 = wn? are the same in
each n-group, and the laser parameters are chosen so as
to make sure the condition 2 < 1 holds. This ensures
that the ionization is not hindered by processes such as
dynamic localization. The reason behind the decreas-
ing ionization probabilities within each n-group can be
understood using the quasiclassical formula [22] for the
tunneling ionization rate:

T o (|By| F2)"* exp <72(2|Eb|)3/2/3F) NG

The laser field intensity and electron binding energy scale
as ~1/n* and ~1/n%. Thus, the exponent in the ex-
ponential factor in T'y scales as 1/n, which results in
decreasing ionization probabilities within each n-group
when plotted as a function of n in the lowest panel of
Fig. This behavior is reflected in the corresponding
HHG spectra in Fig. [I] and the upper panels in Fig. |2| as
diminishing of the HHG yield.

The decrease in the ionization probability also slows
down as as we successively move onto groups of higher

n, as indicated by the decreasing slopes of the ionization
probabilities in Fig. [2| between successive n-groups. We
find that the ratio of the ionization probabilities between
the 2s and 4s states in Fig. [2 is ~39, whereas between
the 12s and 14s states it is ~7, between 22s and 24s
states ~3, and between 32s and 34s states ~2. This is an
artifact of the scheme we employ in which we divide up
the Rydberg series into successive groups of ns states to
ensure sizable HHG spectra. The rate of decrease in the
ionization probability in each group is determined by the
slope of T'k, i.e., dI'k /dn. This slope is proportional to
the laser intensity we pick for the lowest n in each group
in order to initiate it, and we scale it down by 1/n® inside
the group to keep v fixed. However, although this start-
up intensity for each group is larger than what it would
have been of we were to continue up in n in the previous
group, it is still smaller than the initial intensity in the
previous group. This results in a decreased slope going
through successive n-groups. Hence the decay rates for
the ionization probability in successive groups taper off,
which is reflected in the two upper panels in Fi.g

We also calculate the final n-distributions for the atom
after the laser pulse to see the extent of n mixing which
may have occurred during its evolution in the laser field.
This is done by allowing the wave functions to evolve
according to Eq. long enough after the laser pulse
to attain a steady state. We then project them onto
the bound eigenstates of the atom to determine the final
probability distributions P(n) to find the atom in a given
bound state. The results are shown in Fig. It is evi-
dent from the figure that most of the wavefunction resides
in the initial state after the laser pulse, and that there
is small amount of mixing into adjacent n states. The
mixing is small because only a small fraction of the total
wavefunction takes part in the HHG process. However,
we cannot deduce from our calculations what fraction
of the wavefunction actually participates in HHG, and
hence what fraction of it spreads to higher n. Because
the HHG and ionization are competing processes in this
regime, the ionization probabilities seen in the bottom
panel of Fig. 2] can be taken to be an indication of the
amplitude that goes into the HHG process. For exam-
ple, at n = 4, the ionization probability is at ~10% level
in Fig. 2] and the largest amplitude after the laser pulse
is in n = 5 in Fig. [8|at 107° level. This indicates that
roughly a part in 10 of the amplitude participating in
the HHG process recombines into higher n-states. On the
other hand, at n = 20, the ionization probability is also
at ~10% level, but the spreading in n is between ~1%
and ~0.1% level, suggesting that between roughly 1 and
10% of the wavefunction participating the HHG process
gets spread over adjacent n. In the recombination step
of the HHG process, the probability for recombination
back into the initial state is the largest, chiefly because
the electron leaves the atom through tunneling with no
excess kinetic kinetic energy. It largely retains the char-
acter of the initial state because its subsequent excursion
in the laser field is classical and mainly serves for the



electron wavepacket to acquire kinetic energy before re-
combination. In the next section, we discuss how this
small spread helps shape the double plateau structure
seen in Fig. [T}

III. THREE-DIMENSIONAL CALCULATIONS

Three dimensional quantum calculations were carried
out by solving the time-dependent Schrédinger equation
as described in Ref. [I8]. For sake of completeness, we
briefly outline the theoretical approach below. We de-
compose the time-dependent wave function in spherical
harmonics Yy . (6, ¢) as

t)=> fo(r,t)Yem(0,¢) (6)
¢

such that the time-dependence is captured in the coeffi-
cient fo(r,t). For each angular momenta, f;(r,t) is radi-
ally represented on a square-root mesh, which becomes
a constant-phase mesh at large distances. This is ideal
for description of Rydberg states on a radial grid since it
places roughly the same number of radial points between
the nodes of high-n states. On a square-root mesh, with
a radial extent R over NN points, the radial coordinate of
points are r; = j20r, where or = R/N?. We regularly
perform convergence checks on the number of angular
momenta we need to include in our calculations as we
change relevant physical parameters, such as the laser
intensity. For example, r = 4 x 1074 a.u. in a R = 2000
a.u. box gave us converged results for n = 4, whereas
dr =8 x 107* a.u. in a R = 2800 a.u. box was sufficient
at n = 8. We also found that the number of angular mo-
menta we needed to converge the harmonic spectra was
much larger than n — 1 for an initial n state (e.g., ~120
for the n = 8 state).

We split the total hamiltonian into an atomic hamil-
tonian plus the interaction hamiltonian, such that
H(r,l,t) = Ha(r,l) + H,(r,t) — Ey. Note that we sub-
tract the energy of the initial state from the total hamil-
tonian to reduce the phase errors that accumulate over
time. The atomic hamiltonian Ha and the hamiltonian
describing the interaction of the atom with the laser field
in the length gauge are

HAnD) = gz rtiget (O
Hy(r,t) = F(t)zcos(wt) . (8)

Contribution of each of these pieces to the time-
evolution of the wave function is accounted through the
lowest order split operator technique. In this technique,
each split piece is propagated using an implicit scheme
of order 6t3. A detailed account of the implicit method
and the split operator technique employed is given in
Ref. [I8]. The interaction Hamiltonian, F'(t)r cos(d), cou-
ples £ to £ +£ 1. The laser pulse envelope has the same

time-dependence as in the one-dimensional s-wave model
calculations (Eq. [2).

The harmonic spectrum is usually described as the
squared Fourier transform of the expectation value of
the dipole moment (d.(t) = (z)(t)), dipole velocity
(v.(t) = (£)(t)), or the dipole acceleration (a,(t) =
(2)(t)) (see [24] and references therein). In our three-
dimensional calculations, we evaluate all three forms and
compare them for different initial n states:

d-(t) = (W(71)[z[U(7, 1)) 9)
v2(t) = (W(7,1)|2[¥ (7, 1)) (10)
ax(t) = (W(r8)[Z[¥(rt)) (11)

where 2 = —i[H,7] and 2 = —[H, [H, z]]. Ref. [24] found
that the Fourier transforms d. (w), v,(w), and a,(w) are
in good agreement when the pulses are long and “weak”
in harmonic generation from the ground state of H atom,
where “weak” refers to intensities below over-the-barrier
ionization limit. As we increase the initial n in our sim-
ulations keeping the Keldysh parameter v constant, we
find that the agreement between these three forms of har-
monic spectra gets better. This observation is in agree-
ment with the findings in Ref. [24], because to keep ~v
fixed, we scale the pulse duration by ~n? and the peak
laser field strength by ~1/n%. Although the energy of
the initial state is also scaled by ~1/n? and the pulse
duration is the same in number of optical cycles, the ion-
ization probability drops within a given n-series in Fig.
This suggests that the pulse is effectively getting weaker
as we increase n for fixed v. We report only the dipole
acceleration form |a,(w)|? to refer to harmonic spectra,
chiefly because it is this form that is directly proportional
to the emitted power, i.e., S(w) = 2w*|a,(w)|?/(37c?).
Because high-harmonic generation and ionization are
competing processes in the physical regime we are inter-
ested in, it is useful to investigate the momentum distri-
bution of the ionized part of the wave function to gain
further insight into the HHG process. In order to eval-
uate the momentum distributions, we follow the same
procedure outlined in Ref. [23]. For sake of complete-
ness, we briefly describe the method: In all simulations,
the ionized part of the wave function is removed from the
box every time step during the time propagation, in or-
der to prevent unphysical reflections from the radial box
edge. This is done by multiplying the wavefunction by a
mask function m(r) at every time step, where m(r) spans
1/3 of the radial box at the box edge. We retrieve the
removed part of the wave function by evaluating

Api(r,t') = [1L = m(r)] u(r,t) (12)

at every time step, and Fourier transform it to get the
momentum space wave function A¢(p,, p.,t'),

A(b(pp’pza =2 Z

X /000 Gi(pr) Ay (r,t)r? dr . (13)

) Y (0, )



Here the momentum p = (pf) + p?)Y/2 is in cylindrical
coordinates and j;(pr) are the spherical Bessel functions.
We then time propagate A¢(p,, p., ') to alater final time
t using the semi-classical propagator,

AG(pp,pzt) = Ad(pp,pz, ') e (14)

where S is the classical action. For the time-dependent
laser field F'(t), action S is calculated numerically by in-
tegrating p? along the laser polarization,

1 I
S = ipi(t—t/)—i-ﬁ/t/ prdt"” (15)

t
Dy = / F(t")at" (16)
t/

We are assuming that the ionized electron is freely prop-
agating in the classical laser field in the absence of the
Coulomb field of its parent ion, and this method is nu-
merically exact under this assumption.

A. Results and discussion

The double plateau structure we see in the one-
dimensional spectra in Fig. [1| can be also observed from
our three-dimensional simulations. In Fig.[d] the squared
dipole acceleration |a(w)|? is plotted for the initial states
of 1s (black), 4s (green), and 8s (blue) of Hydrogen atom
as a function of the scaled harmonic order w/(won) = q.
In these calculations, we adhere to v = 0.75 as in the
one-dimensional calculations, and start at n = 1 with in-
tensity 2 x 101 W/cm? and A = 800 nm. From this, we
use the n scaling discussed in Sec. [[TA] to determine the
laser parameters for higher n states. Apart from the dou-
ble plateau structure, there is decrease in the HHG yield
with increasing n in Fig.[4] similar to the one-dimensional
case. Again, this suggests that although + is fixed for all
three initial states in Fig. |4l the atom sinks deeper into
the tunneling regime as n is increased, similar to what we
have seen in the one-dimensional case in Sec. [T Al The
main difference in Fig. [d]is that the first plateau is not as
flat as in the one-dimensional calculations, as often the
case when comparing one- and three-dimensional HHG
spectra.

In order to clearly identify the first and the second
cut-offs seen in Fig.[l] we have smoothened the 4s and 8s
spectra by boxcar averaging to reveal their main struc-
ture (solid red curves) in Fig. 4l The usual scaled cut-off
from the semiclassical three-step model is at gmax/n =~ 35
in all three spectra, and it is independent of n. A sec-
ondary cut-off emerges at the same scaled harmonic as
in the one-dimensional case, which is labeled as ks in the
4s and the 8s spectra at g ~ 23.45. It is clear from Fig.
that just as the usual cut-off at gmax/n, ko is also univer-
sal beyond n > 4. This secondary cut-off separates the
two plateaus, first spanning lower frequencies below ks,
and the second spanning higher frequencies between ko
and Gmax /M-

The mechanism behind the formation of the secondary
cut-off k9 can be understood in terms of the ionization
and the recombination steps of the semiclassical model.
In the first step, the electron tunnels out of the initial
ns state into the continuum, and has initially no kinetic
energy. After excursion in the laser field, it recombines
with its parent ion. In this last step, recombination oc-
curs primarily back into the initial state. This is because
the electron was liberated into the continuum with virtu-
ally no excess kinetic energy, and the electron wavepacket
mainly retains its original character. When it returns to
its parent ion to recombine, the recombination probabil-
ity is highest for the bound state with which it overlaps
the most. As a result, recombination into the same initial
state is favored. This mechanism is associated with the
usual cut-off since its position depends on the ionization
potential: gmax = (I, + 3.17U,) /wo.

On the other hand, there is still probability that the
electron can recombine to higher n states. This would re-
sult in lower harmonics because less than I, needs to be
converted to harmonics upon recombination. The cut-off
for this mechanism would be achieved when the electron
recombines with zero energy near the threshold (n — o).
Because the maximum kinetic energy a free electron can
accumulate in the laser field is 3.17U,, the lower har-
monic plateau would cut off at 3.17U,. For the laser
parameters used in Fig. |4l this corresponds to the scaled
harmonic ¢ = 23.45, which is marked by the red arrows
labeled as ks on the 4s and the 8s spectra. To reiterate,
the second plateau with higher harmonics includes:

1. trajectories which recombine to the initial state
(n1 — mnq) after accumulating kinetic energy up
to 3.17U),

2. trajectories which recombine to a higher but nearby
n state (ny — ng, where ny > nj) that have ac-
quired kinetic energy up to 3.17U,

3. trajectories which recombine to much higher n
states (n; — ng, where ny > nj) resulting in the
cut-off at ¢ = 23.45.

The n- and [-distributions for the 4s and 8s states as
a function of time can be seen in Fig. [l Notice that the
laser pulse is centered at ¢ = 0 o.c. and has 4 cycles at
FWHM for both states. It is clear from the first column
that the the atom mostly stays in the initial state and
only a small fraction of the wavefunction contributes to
the HHG process. To appreciate how small, we note that
the highest contour is at unity, and lowest contour for
both the 4s and the 8s states are at the ~10710 level. At
the end of the pulse, there is a small spread in n, which is
skewed towards higher n in both cases. This skew is ex-
pected since the energy separation between the adjacent
n manifolds drop as ~1/n?, and therefore it is easier to
spread to the higher n manifolds than to lower n. The
small amplitude for this spread is a consequence of the
fact that we are not in the n-mixing regime. In the sec-
ond column, we see that the orbital angular momentum



[ also spreads to higher [ within the initial n-manifold,
and the small leakage to higher angular momenta at the
end of the pulse is a consequence of the small probability
for spreading to the higher n-manifolds.

The second step of the harmonic generation process in-
volving the free evolution of the electron in the laser field
be understood on purely classical grounds. It was the
classical arguments that led to the 3.17U, limit for the
maximum Kkinetic energy attainable by a free electron.
In the context of this paper, performing such classical
simulations can yield no insight to how the excursion
step of the HHG behaves under the scaling scheme we
have employed so far. This is because the classical equa-
tions of motion perfectly scale under the transformations
r—m? t = tn? w — w/n? and E — E/n? where
r is distance and t is time. On the other hand, it is the
lack of this perfect scaling property of the Schrédinger
equation that accounts for the differences between dif-
ferent initial n states we have seen from our quantum
simulations. One way to examine the excursion step by
itself in our quantum simulations is to look at the mo-
mentum distribution of the part of the wavefunction that
contributes to the HHG spectra.

To this end, we calculate the momentum map of the
ionized part of the wavefunction when the atom is ini-
tially prepared in the 4s state. The reason we look at the
ionized part of the wavefunction is because harmonic gen-
eration and ionization are competing processes. There-
fore one would expect that they should mirror each other
in their behavior. Fig. [ shows this momentum distribu-
tion obtained by Fourier transforming the ionized part of
the wavefunction, which is accumulated over time until
after the laser pulse (see Eq. onward). Since the
problem has cylindrical symmetry, the horizontal axis is
labeled p)| to refer to the momentum component parallel
to the laser polarization direction (same as p,). The ver-
tical axis p, is the perpendicular component. We have
also labeled the 3.17U, limit for the maximum kinetic
attainable, which is along the dot-dashed semicircle. As
expected, the total momentum of the escaped electrons
cut off at 3.17U,, and the components which would have
contributed to the two different plateaus in Fig. (4| are
visible close to the laser polarization direction.

We also look at the momentum map of the wavefunc-
tion inside our numerical box that falls beyond the peak
of the depressed Coulomb potential at r = 1/ V'F. Part
of the wavefunction in the region 7 < 1/4/F is removed
by multiplying it with a smooth mask function before the
Fourier transformation step described in Sec.[[TI} The re-
sults when the atom is initially in the 4s and 8s states
are seen in Fig. [7] at five instances during the laser cycle
at the peak of the pulse (labeled A, B, C, D, and E). We
have also labeled three semicircles corresponding to three

momenta , / pﬁ + p? of interest:

1. the 3.17U, limit, also seen in Fig. [6]

2. k; corresponding to the kinetic energy U,

3. ko corresponding to the kinetic energy necessary
to emit the harmonic ¢ = 23.45 at the secondary
cut-off in Fig. [4] if the electron recombines into its
initial 4s or 8s state upon rescattering.

The amplitude inside the k; semicircle contributes to
only very low harmonics, below the scaled harmonic la-
beled as ki in Fig. [l This part of the spectra is not
suitable for the semiclassical three step description of
HHG. The annular region between the semicircles k1 and
the ko contributes to the first low harmonic plateau in
Fig. |4l Finally, the region between ko and the semiclas-
sical 3.17U, limit contributes to the less intense second
plateau. The distinction between the lower harmonics
from the inner k; semicircle and the higher harmonics
from the annular region between k; and ko is manifested
most clearly in the 4s column, as longer and shorter wave-
lengths in the momentum maps inside these regions. Ex-
pectedly, both momentum maps for the 4s and the 8s ini-
tial states show the same structures, the essential differ-
ence being the number of nodes in the momentum space
wave functions which scales as n2. Incidentally, a rescat-
tering event is visible on the laser polarization axis at ko
in panel D of the 4s column, giving rise to kinetic energy
beyond the 3.17U,, limit on the left.

IV. CONCLUSIONS

We have presented results from one- and three-
dimensional time-dependent quantum calculations for
higher-order harmonic generation from excited states of
H atom for a fixed Keldysh parameter v. Starting from
the ground state, we chose laser intensity and frequency
such that we are in the tunneling regime and ionization
probability is well below one per cent. We then scale
the intensity by 1/n® and the frequency by 1/n? to keep
v fixed as we increase the principal quantum number n
of the initial state of the atom. Because « is fixed, the
common wisdom is that the dynamical regime which de-
termine the essential physics should stay unchanged in
the HHG process as we go up in n of the initial state.
Our one-dimensional calculations demonstrate that this
is indeed the case, and although the emitted power (HHG
yield) drops as we climb up in n, the resulting harmonic
spectra display same wuniversal features beyond n~10.
The most distinguished feature that develops when the
atom is initially prepared in a Rydberg state is the emer-
gence of a secondary plateau below the semiclassical cut-
off gmax in the HHG plateau. This secondary cut-off
splits the harmonic plateau into two regions: one span-
ning low harmonics and terminating with a secondary
cut-off, and a second plateau with lower yield and higher
harmonics terminating at the usual semiclassical cut-off
at Gmax-

We have also found that the positions of these cut-off
harmonics also scale as 1/n, and introduced the concept
of “scaled harmonic order”, ¢ = w/(won). When plotted
as a function of ¢, the harmonic spectra appear universal



and, except for the overall yields, the spectra for high n
look essentially identical.

We then carried out fully three-dimensional calcula-
tions for three of the n states in the lowest n-group
in the one-dimensional calculations to gain further in-
sight into the scaling properties we have seen in the one-
dimensional calculations. This also serves to investigate
possible effects of having angular momentum. We found
the same features as in the one-dimensional spectra, ex-
cept that the yield from the first plateau is skewed to-
wards lower harmonics. We associate this with spreading
to higher n states during the tunnel ionization and recom-
bination steps by analyzing the n- and [-distributions of
the atom after the laser pulse. Momentum distributions
of the ionized electrons and the wave function beyond the
peak of the depressed Coulomb potential at 7 = 1/v/F
show features which we can relate to the universal fea-
tures we see in the HHG spectra at high n. We identify
the first plateau in this universal HHG spectrum with
features in momentum space between two values of mo-

mentum: (1) the momentum corresponding to kinetic
energy U, and (2) the momentum corresponding to ki-
netic energy if the electron emits the secondary cut-off
harmonic upon recombining to its initial state. The lat-
ter case also occurs when the electron recombines to a
much higher Rydberg state than the one it tunnels out
after accumulating maximum possible kinetic energy of
3.17U,, during its excursion in the laser field.
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FIG. 1: (Color online) High harmonic spectrum from the Rydberg states of H atom. The scaled laser field intensities and the
wavelengths are, (a) 200/n® TW /cm? and 800n® nm, (b) 300/n® TW/cm? and 652n® nm, (c) 400/n® TW/cm? and 566n° nm,
(d) 470/n® TW/cm? and 522n® nm. The width of the laser pulse is 4-cycles at FWHM, and the selected parameters correspond
to v = 0.755 in each case. The scaled harmonic order is ¢/n, where ¢ = w/wo is the harmonic order.
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FIG. 2: (Color online) (Upper two panels) |a(w)
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function of n mimic the behavior of |a(w)|? in the upper panels. The field parameters are the same as in Fig. [1] (a)-(d).
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FIG. 3: (Color online) The probability distributions in n following the laser pulse for the initial states seen in Fig. It is
clear that the atom essentially resides in its initial state after the pulse, which means the recombination step in the harmonic
generation process occurs primarily back to the initial state. The probability to find the atom in other nearby states is orders
of magnitude smaller, and the probability distribution becomes symmetrical about the initial state for n > 10 due to decreasing
anharmonicity in the surrounding energy level structure.
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Fig. 04
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FIG. 4: (Color online) Dipole acceleration from direct solution of the three-dimensional time-dependent Schrodinger equation
when the atom is initially prepared in 1s, 4s and 8s states of H atom. The horizontal axis is the scaled harmonic order
g = q/n = (w/wo)/n. There are three universal cut-off points in the spectra: marked as k1, k2, and the usual I, +3.17U, limit.
The double plateau structure mirrors that of the one-dimensional spectra from Fig. [T, with a universal secondary cut-off at
q = 23.45. The arrows marked as k1 and k2 are discussed in the context of Fig. m
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Fig. 05
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FIG. 5: (Color online) n- and I-distributions for the probability to find the atom in 4s and 8s states of H for the laser parameters
used in Fig. @ All probabilities are plotted in log, scale and the lowest contour in the n-distributions for both states is at the
10719 level. The half-cycles of the 4-cycle laser pulse are clearly visible.
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FIG. 6: The momentum distribution for the ionized part of the wave function integrated over time until after the laser pulse
when the atom is initially prepared in the 4s state. The total momentum p|2| + p? corresponding to the maximum kinetic

energy that can be attained by a free electron in a laser field is marked by the dot-dashed semicircle and labeled as 3.17U,.
This is the limit that determines the semiclassical cut-off at gmax = Ip + 3.17Up.
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FIG. 7: (Color Online) Momentum distributions in the region r > 1/+/F for the 4s (left column) and 8s (right column) states
at five instances during the laser cycle at the peak of the pulse (indicated on top). The region r > 1/+/F is beyond the peak
of the Coulomb potential depressed by the strong laser field.
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