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Abstract
Mutations in HNF transcription factor genes cause the most common subtypes of maturity-onset of diabetes of youth 
(MODY), a monogenic form of diabetes mellitus. Mutations in the HNF1-α, HNF4-α, and HNF1-β genes are primarily 
considered as the cause of MODY3, MODY1, and MODY5 subtypes, respectively. Although patients with different sub-
types display similar symptoms, they may develop distinct diabetes-related complications and require different treatments 
depending on the type of the mutation. Genetic analysis of MODY patients revealed more than 400 missense/nonsense 
mutations in HNF1-α, HNF4-α, and HNF1-β genes, however only a small portion of them are functionally characterized. 
Evaluation of nonsense mutations are more direct as they lead to premature stop codons and mostly in mRNA decay or 
nonfunctional truncated proteins. However, interpretation of the single amino acid change (missense) mutation is not such 
definite, as effect of the variant may vary depending on the location and also the substituted amino acid. Mutations with 
benign effect on the protein function may not be the pathologic variant and further genetic testing may be required. Here, 
we discuss the functional characterization analysis of single amino acid change mutations identified in HNF1-α, HNF4-α, 
and HNF1-β genes and evaluate their roles in MODY pathogenesis. This review will contribute to comprehend HNF nuclear 
family-related molecular mechanisms and to develop more accurate diagnosis and treatment based on correct evaluation of 
pathologic effects of the variants.
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1  Introduction

MODY (maturity-onset diabetes of the young) is a mono-
genic subtype of non-insulin dependent diabetes mellitus 
characterized by autosomal dominant inheritance, onset 
before the age of 25 years and a defect in beta-cell function 
[1, 2]. The genes related to MODY subtypes first emerged 
in the 1990s, and up to date 14 different genes (HNF4-α, 
GCK, HNF1-α, PDX1, HNF1-β, NEUROD-1, KLF-11, CEL, 
PAX4, INS, BLK, ABCC8, KCNJ11, and APPL1) have been 
associated to MODY pathogenesis [3, 4]. However, the most 
common subtypes are caused by the mutations in three mem-
bers of Hepatocyte Nuclear Factors; HNF1-α, HNF4-α, and 
HNF1-β, and Glucokinase gene (GCK) [5] Previous studies 
have demonstrated that mutations in the HNF1-α, HNF4-α, 

and HNF1-β genes are primarily considered as the main 
cause of MODY3, MODY1, and MODY5, respectively 
[6–10]. The prevalence of HNF1-α-MODY (MODY3) is 
estimated to vary between 30–70% in all MODY cases in 
different populations while mutations in HNF4-α-MODY 
(MODY1) and HNF1-β-MODY (MODY5) subtypes con-
stitute almost 10–20% of all MODY cases [11].

Patients with different MODY subtypes have common 
clinical properties such as reduction in insulin secretion 
and hyperglycemia, but they are also reported to develop 
different complications depending on the type of the patho-
logic mutation [11]. For example, patients with mutations 
in HNF1-α and HNF4-α genes carry a high risk for micro-
vascular complications while patients with mutations in 
HNF1-β gene develop renal cysts or urogenital tract prob-
lems. The patients diagnosed with different subtypes have 
also different treatment options, such as HNF1-α and HNF4-
α-MODY patients may be treated with diet, oral antidiabetic 
drugs or insulin depending on the severity of the symptoms 
while HNF1-β-MODY patients have insulin treatment [12]. 
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Therefore, a precise interpretation of the pathologic effect 
of the genetic variations identified in patients is crucial for 
developing effective diagnostic systems, personalized medi-
cine, genetic counselling for the family and to take precau-
tions for the complications that may develop later [13].

Diagnosis of MODY mainly depends on the clinical cri-
teria and evaluation of the pathologic variants. Functional 
characterization studies are fundamental to correctly classify 
the pathologic effects of the mutations identified in MODY 
patients. However, even more than 400 missense/nonsense 
mutations have been identified in HNF1-α, HNF4-α and 
HNF1-β genes, only a small proportion of them were func-
tionally analyzed. The effects of nonsense mutations are 
more well-defined as they yield nonsense-mediated mRNA 
decay or non-functional truncated proteins. However, single 
nucleotide mutations that result in an amino acid change 
(missense mutations) are more confusing to interpret, as they 
may have benign effect that does not lead to a disease pheno-
type or may increase the risk to develop a complex disease. 
Associations studies in Type II diabetes revealed that rare 
variants in MODY genes may increase susceptibility but are 
not sufficient to trigger a disease phenotype alone [14, 15]. 
In recent years, studies have been reported to re-classify 
the single amino acid variations identified in MODY genes 
according to the effects of the mutations on the function of 
the proteins to clarify the molecular pathogenesis of MODY 
and to apply correct treatment for the patients [16, 17].

In this review, we aim to discuss the functional characteri-
zation of the single amino acid change (missense) mutations 
identified in HNF1-α, HNF4-α and HNF1-β genes which 
were discovered in MODY patients and to evaluate their 
roles in MODY pathogenesis.

2 � Functional Characterization Studies 
for the Identified Variants in HNF 
Transcription Factors

Hepatocyte nuclear factors (HNF1-α, HNF4-α and HNF1-β) 
belong to the family of transcription factors that regulate 
the transcription of a wide range of genes coding for insulin 
and other proteins that have roles in glucose metabolism and 
β-cell development [18–21]. HNF-transcription factor family 
have similar structures which include dimerization, DNA 
binding and transactivation domains. Functional analysis of 
the mutations in these genes revealed that they are predomi-
nantly loss-of-function mutations that lead to a defect in 
dimerization ability, DNA binding affinity, transcriptional 
activity or subcellular localization depending on the location 
of the mutation [21–25].

In this regard, to assess the effects of the mutations identi-
fied in HNF nuclear factors, several functional characteriza-
tion assays are carried out to compare the activity of mutant 

proteins with wild type. For in vitro expression and analysis 
of mutant proteins, cell lines such as HeLa and Cos-7 are 
commonly used as they do not express endogenous HNF 
proteins. Dimerization ability of the mutant proteins is 
mainly analyzed by means of retardation assay on native 
gel by using extract of cells which were co-transfected with 
wild type and mutant HNF genes [26, 27]. DNA binding 
ability of HNF proteins is evaluated by Electrophoretic 
Mobility Shift Assay (EMSA). HNF1-α and HNF1-β rec-
ognize and bind to same consensus 5′-GTT​AAT​NATT​AAC​
-3′ sequence in the promoter regions of target genes, while 
the most common binding motif of HNF4-α was reported as 
direct repeat of AGG​TCA​ with a spacing of 1 nt (DR1, AGG​
TCA​xAGG​TCA​) [21, 22, 25]. Therefore, in EMSA in vitro 
expressed mutant or wild type proteins are incubated with 
labelled double stranded DNA including the recognition 
sequence of HNF proteins and analyzed on SDS-PAGE. 
Transactivation ability of HNF proteins is predominantly 
analyzed by luciferase reporter assay in which the promoter 
regions of target genes such as HNF4-α P2 or GLUT2 for 
HNF1-α, CYP2D6 or HNF1-α for HNF4-α and GLUT2 for 
HNF1-β are cloned into luciferase reporter plasmids. HNF 
proteins are functional as dimers, therefore whether mutant 
protein has a dominant negative effect on wild type is also 
evaluated by transfecting mutant proteins into mouse (Min6) 
or rat (INS-1) pancreatic cells which express endogenous 
HNF proteins. Immunolocalization studies are performed 
in Cos-7 or HeLa cells to investigate the nuclear localiza-
tion of the mutant proteins as HNF nuclear factors should 
be transported to the nucleus after they are expressed in the 
cytoplasm.

2.1 � Functional Characterization of Single Amino 
Acid Mutations in HNF1‑α

Hepatocyte nuclear factor 1(HNF1)-α gene codes for a tran-
scription factor which is expressed in different tissues such 
as liver, kidney, and pancreas [28, 29]. HNF1-α gene, which 
is located on chromosome 12q24.31, comprises 23,945 bp 
and consists of 10 exons [30].

HNF1-α is the member of homeodomain-containing pro-
tein family, which binds to DNA to regulate the expressions 
of target genes such as insulin (INS) and glucose transporter 
(GLUT2) in mature β -cells particularly [21, 31, 32]. HNF1-α 
gene codes for a protein with 631 amino acids including 
three known domains; a dimerization domain (amino acids 
1 to 31), a bipartite DNA-binding domain (POU domain: 
91-181aa and homeodomain: 198–279aa) and a transacti-
vation domain (amino acids 280 to 631) [33–36]. HNF1-α 
functions as either homo- and heterodimers with HNF1-β, 
which are formed through dimerization domain. Functional 
dimers recognize and bind to DNA via their DNA binding 
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domains (POU-like and homeodomain motifs) and regulate 
transcription via their transactivation domains [34, 36–38].

Previous studies have already shown that mutations in the 
HNF1-α gene are the main cause of maturity onset diabetes 
of the young 3 (MODY3). Patients with HNF1-α mutations 
were reported to have progressive β-cell dysfunction and 
hyperglycemia as they have insufficient insulin release in 
response to increased blood glucose levels [38]. MODY3 
patients are treated with sulphonylureas initially to improve 
glycemic control but insulin therapy is required later when 
the blood glucose levels cannot be manageable [12, 43].

Up to date, more than 300 nonsense/missense mutations 
in the coding regions of HNF1-α gene have been directly 
associated to MODY3 phenotype according to “The Human 
Gene Mutation Database (HGMD)” [44]. As shown in 
Fig. 1, the majority of these mutations are located on the 
functional domains which govern dimerization, DNA bind-
ing, transactivation ability and nuclear transport of HNF1-α.

In this review, we assessed functional characteriza-
tion studies of 63 single amino acid changes identified on 
HNF1-α in MODY patients as shown in Table 1. Nonsense 
mutations (Q7X, Q170X, Q171X, R229X and Q466X) 
which lead to premature stop codon and nonfunctional 

truncated proteins have been included as well. As shown in 
Fig. 1, the effects of only four mutations (Q7X, L12H, G20R 
and L27I) were investigated in dimerization domain of 
HNF1-α (1-31aa). As expected, Q7X mutant protein, which 
lacks the functional domain, exhibits no binding ability. 
The role of L12 and G20 residues on the other hand, can be 
explained by the detailed analysis of the crystal structure of 
the HNF1-α dimerization [45]. According to this structure, 
L12 residue is crucial for both stability and functional sur-
face of the dimer and L12H mutation leads to a significant 
decrease in thermodynamic stability while G20R mutation 
is associated with severe thermodynamic destabilization and 
loss of architectural specificity.

Mutations in DNA binding domains of HNF1-α (91-
181aa and 198–279aa) may reduce the DNA binding affin-
ity and also transactivation ability of HNF1Α. DNA bind-
ing assays indicate that the region between K120 and S142 
has a critical function as mutations in this region exhibit 
weak binding ability, less than 20% of wild type HNF1-α. 
A low transactivation activity along with weak DNA bind-
ing is also reasonable in these mutant proteins as HNF1Α 
transcription factor should recognize and bind to consen-
sus sequence in the promoter regions of target genes before 

Fig. 1   a 3D protein modeling of structural domains of human 
HNF1α using de novo protein modeling. HNF1α protein model is 
built through DMPfold 1.0 Fast Mode algorithm on the PSIPRED 
server [39, 40]. RSCB PDB database; dimerization domain: 2GYP 
[41], DNA binding domain: 1IC8 [42]. b Schematic representation 
of HNF1-α structure, and distribution of single amino acid mutations 

identified in MODY patients so far. Three main functional domains; 
a dimerization domain (amino acids 1 to 31), yellow color, a bipar-
tite DNA-binding domain (POU domain: 91–181 and homeodomain: 
198–279), blue color, and a transactivation domain (amino acids 280 
to 631), green color. The mutations identified on functional domains 
are boxed below, and or above (Color figure online)
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Table 1   Functional analysis of single amino acid change mutations in the HNF1-α gene

HNF-1α Mutations Dimerization 
ability

DNA binding ability Transactiva-
tion ability

Nuclear localization References

Dimerization Domain p. Q7X - No No - [2]
p. L12H - - Reduced Nucleus [52]
p. G20R - - No - [53]
p. I27L - - Reduced - [54]

DNA Binding Domain
(POU-like motif)

p. V103M - Reduced Reduced Cytoplasm & nucleus [34]
p. L107I - Weak Reduced Nucleus [55]
p. P112L - Reduced Low Cytoplasm & nucleus [17, 47, 56]
p. W113L - - Normal Nucleus [16]
p. R114C - Normal Normal Cytoplasm & nucleus [34]
p. A116V - Reduced Reduced Cytoplasm & nucleus [17]
p. K120E - Weak Reduced Cytoplasm & nucleus [16]
p. Y122C - Reduced - Cytoplasm & nucleus [55]
p. Q130E - Weak Reduced Cytoplasm & nucleus [16]
p. R131W - Weak Reduced Cytoplasm & nucleus [47]
p. R131P - Weak Low Cytoplasm & nucleus [16]
p. R131Q - Weak Reduced - [56, 57]
p. L139P - Weak Low Cytoplasm & nucleus [16]
p. S142F - No No Nucleus [57]
p.M154I - Reduced Low Nucleus [16]
p. K158N - - Reduced Nucleus [52]
p. R159Q - - Reduced Nucleus [52]
p. Q170X - - Low Cytoplasm & nucleus [16]
p. R171X No No No - [27, 47]
p. R171G - Normal Reduced Nucleus [34]
p. R171Q - Normal Reduced - [17]
p. A174V - Normal Reduced - [17]
p. F177S - - Normal Cytoplasm & nucleus [16]
p. G181A - Normal No - [17]

DNA Binding Domain
(Homeodomain motif)

p. R203H - Reduced Low Cytoplasm & nucleus [17]
p. R203C - - Reduced Cytoplasm & nucleus [35, 37, 52]
p. R229X - - No Cytoplasm & nucleus [52]
p. R229Q Normal Weak Low Nucleus [27, 47]
p. E235Q - Normal Normal Cytoplasm & nucleus [34]
p. G245R - Normal Reduced Cytoplasm & nucleus [34]
p. G253R - Reduced Reduced Nucleus [16]
p. L254G - No Low - [58]
p. T260M - - Low - [17]
p. R263H - Reduced Reduced Cytoplasm & nucleus [34]
p. R263C - No Low Nucleus [47]
p. R271Q - Induced Reduced Cytoplasm & nucleus [34]
p. R271W - Reduced Low Cytoplasm & nucleus [47]
p. R272C - No No Nucleus [35, 59]
p. A276D - Reduced Normal Cytoplasm & nucleus [47]
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inducing transcription. In this region, R131 residue located 
in POU domain has been reported to substitute with different 
amino acids (Proline, tryptophan and glutamine) in differ-
ent MODY patients. Functional analysis of these mutations 
(R131P, R131W and R131Q) indicated weak DNA bind-
ing and reduced transcriptional activity. Molecular docking 
analysis of two of these mutations (R131W and R131Q) also 
showed a weak binding affinity, supporting the critical role 
of this residue [38]. Arginine is a hydrophilic amino acid and 
was shown to be preferable in interactions with bases [46]. 
Therefore, substitutions of arginine with other amino acids 
may abolish this interaction and explain lowered binding 
affinities. DNA binding assays also indicate strong damaging 
effects of mutations in the homeodomain such as R229Q, 
R263C and R272C which also support the essential role of 
arginine residues in DNA binding [27, 47].

Functional studies also investigate the effects of muta-
tions on transactivation ability associated to the amino acids 
280–631 of HNF1-α transcription factor. Here, we classified 
the effects of mutations on transactivation ability as normal, 
reduced, low or no transcriptional activity, indicating 80% 

or more, 40–80%, 10–40% and less than 10%, respectively, 
by comparing the activity of mutant proteins to the wild 
type (set as 100%) (Table 1). Unexpectedly, mutations which 
are directly inside of the transactivation domains have less 
damaging effect on transcription activity compared to the 
mutations located in DNA binding domain. Therefore, a 
reduced transcription activity is mostly associated to lower 
DNA binding affinity. However, Ban et al. reported that 
HNF1-α interacts with p300, co-activator of transcription, 
via a region including amino acids 391–631 in transactiva-
tion domain while activating the transcription of the GLUT2 
(glucose transporter) gene which is one of the key targets 
of HNF1-α in pancreas [48]. Therefore, the mutations in 
transactivation domain may impair the interactions with co-
activators and lead a reduced transcription activity without 
any effect on DNA binding affinity.

Nuclear localization of HNF1-α is also crucial for the 
transcriptional activity, therefore functional studies also 
investigate the effects of mutations in the import of HNF1-α 
to the nucleus. Bjørkhaug et al. reported that there are three 
important regions designated as region A (amino acids 

Induced represents more than 100% of wild type; Normal, 80% or more; Reduced, 40–80%; Low/Weak, 10–40%; No, 0–10%

Table 1   (continued)

HNF-1α Mutations Dimerization 
ability

DNA binding ability Transactiva-
tion ability

Nuclear localization References

Transactivation Domain p. G288W - - Reduced Nucleus [16]

p. G319S - Normal Reduced - [50]

p. Y322C - Normal Reduced - [17, 56]

p. A326V - Normal Low - [17]

p. H349Q - Normal Normal Nucleus [34]

p. P379H - - Reduced - [60]

p. T382I - Normal Reduced - [17]

p. T384K - - Normal Nucleus [16]

p. G415R - Reduced Reduced Cytoplasm & nucleus [17, 59]

p. G437V - Reduced Low Nucleus [16]

p. T441K - Normal - - [17]

p. P447L Normal Reduced Reduced - [27]

p. V462I - - Reduced - [17]

p. Q466X - Reduced Low Cytoplasm & nucleus [47, 61]

p.H483R - - Reduced Nucleus [16]

p. S487N - Normal Normal Nucleus [34]

p. P519L - - Low - [17]

p. T521I - - Reduced - [37]

p. V617I - - Reduced - [37]

p. T620I Normal Normal Induced - [27]
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158–171), region B (amino acids 197–205) and region C 
(amino acids 271–282) which may function as nuclear local-
ization signals on HNF1-α protein [35]. Functional stud-
ies indicated that deletion of region B or C has the great-
est impact on nuclear localization of HNF1-α. In region B, 
R203C and R203H mutant proteins have defects in nuclear 
transport and most of the proteins are trapped in cytoplasm. 
Arginine to tryptophan (R271W) and glutamine (R271Q) 
substitutions in region C appeared to be the most damag-
ing mutations, however, arginine to cysteine (R271C) in the 
same residue do not have an effect on nuclear localization 
of HNF1-α. In our recent study, we enlighten the interac-
tion of R271W mutant HNF1-α protein with importin recep-
tor KPNA6, which is responsible to recognize and bind to 
nuclear localization signal on cargo proteins and transport 
them to the nucleus [49]. The results of in vitro and molecu-
lar docking studies indicated that R271W mutation impairs 
the interaction of HNF1-α with KPNA6 so that mutant 
HNF1-α proteins are mostly localized in cytoplasm.

Most of the mutations display loss of function properties, 
but exceptions were also reported such as R263H mutant 
protein with a dominant negative effect on transactivation 
activity and nuclear localization of HNF1-α [34]. The func-
tional evaluation of I27L, G319S and S487N polymorphisms 
of HNF1-α which are associated to Type II diabetes were 
also included. I27L variant caused normal DNA binding and 
mildly reduced transcriptional activity while G319S variant 
has almost 50% decrease in transcription activity compared 
to wild type. Benign effect of the I27L variant increases 
the risk to develop the disease, however does not result in 
MODY3 phenotype. Type II patients carrying G319S variant 
on the hand are more prone to develop disease as approxi-
mately 40% of affected subjects in the Oji-Cree of north-
western Ontario harbor this variation [50]. S487N variant 
has a normal activity when expressed alone, however co-
existence of S487N with another pathogenic mutation such 
as R271Q on HNF1-α increased the damaging effect of the 
mutation on protein function [33].

2.2 � Functional Characterization of Single Amino 
Acid Mutations in HNF4‑α

Hepatocyte nuclear factor 4 (HNF4)-α gene, which is also 
known as NR2A1 resides on the long arm of the chromosome 
20 in human and comprises 78,898 bp [62]. HNF4-α gene 
includes 13 exons in total which produces 12 variant tran-
scripts via alternative splicing or alternative initiation (P1, 
and P2 promoters), allowing for HNF4-α isoforms [63–65]. 
Isoforms 1 to 6 are under P1 promoter control which is 
active in liver and kidney while isoforms 7 to 12 are regu-
lated by the P2 promoter which is activated by HNF1-α in 
pancreas [8, 64, 66]

The HNF4-α protein is a member of steroid hormone 
receptor superfamily of transcription factors and expressed 
in the pancreas, liver, kidney and small intestines [67, 68]. 
HNF4-α performs its function as dimers, and involved in 
several processes such as development, metabolism, and 
epithelial-mesenchymal transition [64, 69]. HNF4-α (iso-
form 7, UniProt ID: P41235-5) binds to DNA via zinc-finger 
DNA binding domain which comprises amino acids 51–117 
as shown in Fig. 2. HNF4-α involves two transactivation 
domains, AF1 which is the first 24 amino acids spanning 
the N-terminal, and AF2, amino acids 128–366 in the C-ter-
minal. Dimerization and ligand binding domains (LBD) are 
also embedded in the AF2-transactivation domain, from 
amino acids 175 to 360 that enable the homo- and or het-
erodimerization with other HNF4-α isoforms [23, 36, 70, 
71]. Previous studies by Ko et al. indicated the importance 
of different HNF4-α isoform dimers in the role of different 
gene transcriptions and isoform-dependent transactivation 
activity [64].

Patients harboring mutations in HNF4-α are diagnosed 
as MODY1. In the first decades of the patients diagnosed 
with MODY1, blood glucose levels can be regulated by low 
carbohydrate diet or low-dose sulfonylureas. However, a pro-
gressive decrease in insulin secretion due to β-cell failure 
can be manageable by insulin therapy in later stages of the 
disease or during pregnancy [12].

Up to date, more than 100 mutations on HNF4-α have 
been reported according to HGMD, most of which are 
predominantly nonsense/missense mutations [44]. Single 
amino acid change mutations have a direct association with 
MODY1 phenotype while some rare phenotypes such as 
hyperinsulinemic hypoglycemia, renal Fanconi syndrome 
and liver disease have been also reported [53, 54]. Mostly, 
these mutations on the HNF4-α are directly targeting to the 
functional domains as shown in Fig. 2. In this regard, muta-
tions are mainly located on the AF2-transactivation, ligand 
binding, and dimerization domains while a few of them are 
on AF1-transactivation and DNA binding domains.

Here, 11 missense/nonsense mutations characterized in 
HNF4-α were reviewed in Table 2. Mutations in DNA bind-
ing domains (G115S, M125I, D126Y/H, and T130I) mainly 
decrease the DNA binding and also transactivation ability 
as in the case of HNF1-α. In this domain, further investiga-
tion of G115S mutation revealed that serine substitution in 
DNA binding domain introduced a novel recognition motif 
for Protein Kinase A (PKA) and phosphorylation at serine 
residue interferes with DNA binding ability of HNF4-α [77].

Mutations in transactivation domain (AF-2) of HNF4-α, 
on the other hand, impair transactivation activity as shown 
in Table 2. In this domain, E276Q shows the most damag-
ing effect and detailed analysis of mutation revealed that 
E276Q mutant protein is not stable in the cells and degraded 
into a truncated smaller protein [23]. Most of the mutations 
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characterized in HNF4-α are loss of function mutations and 
do not have dominant negative effects. Recent studies indi-
cate the involvement of increasing number of co-activators, 
co-repressors and other transcription factors which coop-
erate with nuclear receptors like HNF4-α to regulate gene 
expression [78, 79]. Therefore, the effect of mutations on 
the interaction of these transcriptional partners may also be 
evaluated to clarify the molecular pathogenesis of MODY1.

2.3 � Functional Characterization of Single Amino 
Acid Change Mutations in HNF1‑β

Hepatocyte nuclear factor 1 (HNF1)-β, encoded by TCF2 
gene, is a transcriptional factor which is closely related to 
HNF1-α [85]. TCF2 gene is located at chromosome 17q12 
which comprises 58,629 bp, coding for nine exons [86, 87]. 
Similar to HNF1-α, HNF1-β is expressed in such tissues as 
pancreas, liver, and kidney [88, 89].

Related to HNF1-α, HNF1-β is also a member of home-
odomain-containing protein family that binds to the same 
consensus sequence on DNA as HNF1-α and activates 

transcription [90, 91]. HNF1-β works as either homo- or het-
erodimers with the HNF1-α [85, 92, 93]. HNF1-β involves 
three functional domains including a dimerization domain 
(amino acids 1 to 32), a DNA binding domain (amino acids 
88–319) with POU-like (amino acids 88 to 180) and homeo-
domain motifs (amino acids 229 to 319), and a transactiva-
tion domain (amino acids 320–557) as shown in Fig. 3 [22, 
92, 94].

Mutations in HNF1-β gene cause MODY5 phenotype 
which represent almost 5–10% of all MODY cases [11]. 
MODY5 patients may also show hepatic insulin resistance 
thus treatments with sulfonylureas may not manage glycemic 
control and an intensive insulin therapy may be required. 
MODY5 phenotype is mostly associated with renal cysts, 
progressive renal dysfunction, internal genital abnormalities 
and microvascular complications, therefore patients should 
be followed up and treated for these phenotypes[12, 43].

According to HGMD, more than 100 mutations have 
been reported on HNF1-β which are associated to differ-
ent clinical spectrums such as MODY5, multicystic kidney 
disease, renal cysts and renal tract malformation. Previous 

Fig. 2   a 3D protein modeling of structural domains of human HNF4α 
using de novo protein modeling HNF4α protein structure is built 
through DMPfold 1.0 Fast Mode algorithm on the PSIPRED server. 
RSCB PDB database; DNA binding domain: 4IQR[72], 3CBB [73] 
and transactivation domain (AF-1 type), dimerization domain, and 
ligand binding domain: 6CHT [74]. b Schematic representation of 
HNF4-α structure and distribution of single amino acid mutations 
identified so far. Three main functional domains; a zinc-finger DNA 

binding domain which comprises 51–117 amino acids, blue color, 
a transactivation domain including AF1 which is the first 24 amino 
acids spanning on the N-terminal, and AF2, 128–366 amino acids at 
the C-terminal, green color, and a dimerization domain embedded in 
the AF2-transactivation domain, from 175 to 360. Unlike HNF1-α 
and HNF1-β, HNF4-α includes a ligand-binding domain also embed-
ded in the AF2-transactivation domain (amino acids 185 to 368), pink 
color (Color figure online)
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Table 2   Functional analysis of single amino acid change mutations in the HNF4-α gene

Normal represents 80% or more of wild type; Reduced, 40–80%; Low/Weak, 10–40%; No, 0–10%
*Corrected amino acid numbers according to NP_000536.6 reference sequence

HNF4-α Mutations Dimerization 
Ability

DNA Binding 
Ability

Transactivation 
Ability

Nuclear Locali-
zation

Reference

p. S35X - - No - [80]
DNA binding domain p. G115S

*(G102S)
- Reduced Weak [77]

p. M125I
*(M103I)

- Reduced No Nucleus [81]

p. D126Y
*(D113Y)

Normal Weak Reduced - [82]

p. D126H
*(D113H)

Normal Weak Reduced - [82]

p. T130I
*(T117I)

- - Normal - [83]

Transactivation domain, dimerization 
domain, and ligand binding domain

p. R154X
*(R141X)

- No No - [82]

p. V255M
*(V242M)

- - Normal - [23, 84]

p. Q268X
*(Q255X)

- - No - [82]

p. E276Q
*(E263Q)

Normal No No - [23]

p. R324H
*(R311H)

- Normal Normal - [82]

Fig. 3   a 3D protein modeling of structural of human HNF1β using 
de novo protein modeling. HNF1β protein structure is built through 
DMPfold 1.0 Fast Mode algorithm on the PSIPRED server. RSCB 
PDB database; DNA binding domain: 2DA6, 2H8R [95], and 5K9S. 
b Schematic representation of HNF1β structure, and distribution 
of single amino acid mutations identified in MODY patients so far. 

Three main functional domains; a dimerization domain (amino acids 
1 to 32), yellow color, a DNA binding domain (amino acids 106–310) 
with POU-like from 106 to 178 and homeodomain motifs, and a 
transactivation domain (amino acids 310–557). The mutations identi-
fied on functional domains are boxed below, and or above (Color fig-
ure online)
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studies have demonstrated that only 43 missense/nonsense 
mutations in HNF1-β gene are directly related to MODY 
phenotype (MODY5) as shown in Fig. 3. The majority of 
single amino acid changes are located on the DNA binding 
domain while five of them on transactivation domain. No 
mutation was reported on the dimerization domain directly 
associated to MODY5.

Functional analysis of HNF1-β mutations were carried 
out with similar studies for HNF1-α as we mentioned above. 
In this review, ten missense/nonsense mutations in HNF1-β 
gene were functionally analyzed as shown in Table 3. Most 
of the functionally characterized mutations reside in DNA 
binding domain which result in weak or reduced DNA 
binding affinity. As expected, nonsense mutations (R147X, 
R177X and L329X) display a complete loss of transacti-
vation activity as they lack functional domain. MODY5 
patients suffer from a progressive decrease in insulin secre-
tion. Kim et al. reported that expression of P159L mutant 
protein decreased the level of glucose transporter (GLUT2) 
but not insulin suggesting that a defect in glucose transport 
levels may explain the impairment in insulin secretion.

3 � Conclusion

Precise diagnosis and treatment for MODY patients 
depends on the clinical diagnosis and accurate evaluation 
of the mutations. HNF nuclear factor family members, 
HNF1-α, HNF4-α, and HNF1-β are the most frequently 
mutated genes in MODY pathogenesis. Mutation analysis 
of MODY patients revealed missense, nonsense, frameshift 
and splice site variations in these genes. The consequences 
of nonsense or frameshift mutations are more comprehen-
sible as they produce predominantly nonfunctional trun-
cated proteins. However, the effects of missense mutations 
may vary if the mutation occurs in non-conserved residue 

or results in a substitution of an amino acid with similar 
properties. Functional characterization studies of missense 
mutations identified in HNF1-α, HNF4-α, and HNF1-β 
indicate that most of the pathologic mutations display loss 
of function properties and do not have dominant negative 
effects on the wild type although they are functional as 
homo or heterodimers.

As shown in Fig.  4, multiple sequence alignment of 
HNF1-α, HNF4-α, and HNF1-β from various species such 
as mouse, rat, monkey and pig also indicate that all mutated 
amino acids are evolutionary conserved. However, there are 
also mutations which do not show any damaging effect on 
the protein function such as W113L, F177S, H349Q, T384K, 
T620I mutations on HNF1-α, T130I, V255M and R324H on 
HNF4-α. These missense variations may not be the causa-
tive mutations which result in MODY phenotype and further 
DNA analysis may be required for these patients. Functional 
analysis of the mutations may lead to re-classification of the 
pathogenicity of the variant and also diagnosis of the patient. 
For example, Malikova et al. identified and characterized 
G288W mutation in HNF1-α in a MODY patient [16]. The 
mutation had a benign effect on HNF1-α function; therefore, 
the DNA of the patient was further analyzed and E265K 
mutation was detected in GCK gene. The mutations in GCK 
gene cause MODY2 phenotype which is a milder form of 
MODY and can be treated with only diet [16]. Therefore, 
a more comprehensive approach such as next-generation 
sequencing which aims to screen mutations in all MODY 
candidate genes could be a more valuable diagnostic tool 
for MODY patients.

As a conclusion, for precise diagnosis and treatment, 
interpretation of the identified variants and establishing 
correct genotype–phenotype correlation are crucial. If the 
functional analysis does not support the pathogenicity of 
the variant, further genetic testing should be carried out to 
improve the diagnosis and choice of treatment.

Table 3   Functional analysis of single amino acid change mutations in HNF1-β gene

Normal represent 80% or more of wild type; Reduced, 40–80%; Low/Weak, 10–40%; No, 0–10%

HNF1-β Mutations Dimerization 
Ability

DNA Binding 
Ability

Transactivation 
Ability

Nuclear Localization Reference

DNA binding domain p. R112P - Reduced Reduced Nucleus [96]
p. Q136E - No No Nucleus [96]
p. Q147X - No No Cytoplasm & nucleus [96]
p. H153N - No Reduced - [97, 98]
p. P159L - Reduced Reduced - [22]
p. K164Q - No - Nucleus [96]
p. R165H - Reduced Reduced Nucleus [96]
p. R177X - No No Cytoplasm & nucleus [96]
p. R295H Normal Reduced Reduced - [96]

Transactivation domain p. L329X Normal Normal No Nucleus [96]
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