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Sensors are tiny electronic devices having limited battery energy and capability for sensing, data
processing and communicating. They can collectively behave to provide an effective wireless network
that monitors a region and transmits the collected information to gateway nodes called sinks. Most of the
applications require the operation of the network for long periods of times, which makes the efficient
management of the available energy resources an important concern. There are three major issues in the
design of sensor networks: sensor deployment or the coverage of the sensing area, sink location, and data
routing. In this work, we consider these three design problems within a unified framework and develop
two mixed-integer linear programming formulations. They are difficult to solve exactly. However, it is
possible to compute good feasible solutions of the sink location and routing problems easily, when the
sensors are deployed and their locations in the sensor field become known. Therefore, we propose a tabu
search heuristic that tries to identify the best sensor locations satisfying the coverage requirements. The
objective value corresponding to each set of sensor locations is calculated by solving the sink location and
routing problem. Computational tests carried out on randomly generated test instances indicate that the
proposed hybrid approach is both accurate and efficient.
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1. Introduction

Advances in micro-electromechanical systems, digital electronics
and wireless communications have enabled the development of low-
cost, low-power multi-functional tiny devices called sensors. They
use battery power as the energy source and can communicate
through wireless channels over relatively small distances. Each
sensor is usually equipped with one or more sensing units, one or
more transceivers, actuators, processors and storage units. As a result
of significant resource limitations such as limited memory, battery
power, signal processing, computation and communication capabil-
ity, an individual sensor can only sense a small portion of its
environment. However, when a large number of these devices work
in a collaborative fashion to carry out a certain task, they form a
wireless sensor network (WSN). WSNs give rise to a wide range of
real-life applications in areas such as military, homeland security,
health care, environment, agriculture, logistics, smart home or office
design and other areas [26,5].

WSNs can be homogeneous consisting of identical sensors, or
heterogeneous consisting of sensors with possibly different
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technical characteristics and costs. Sensors that collectively form
a WSN are deployed over an area of interest called the sensor
field. The energy source provided for a sensor is usually the
battery power which has not yet reached the stage to operate for
a very long time without being recharged. Moreover, in a large
number of applications sensors are intended to work in remote or
hostile environments, and it is undesirable or impossible to
recharge or replace their batteries. The lifetime of a WSN is
measured by the time until it is disconnected; namely there exist
holes that do not collect or transmit any information. In other
words, the WSN cannot provide an acceptable level of operating
quality beyond its lifetime. Therefore, conserving energy and
prolonging the network lifetime is an important issue in the
design of WSNs [27].

The transmission range of sensors is restricted as a conse-
quence of their energy and size limitations, hence they cannot
communicate through large distances. Therefore, each sensor
needs to transmit its data to a central unit called “base station”
or “sink”, which is a larger device with a comparatively large
energy supply and long-range transmission capabilities such as
internet or satellite communication.

There are various design issues in the construction of a WSN.
One of the most important problems addressed in the literature
is the sensor coverage problem (CP). This problem is centered
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around a fundamental question: “How well do the sensors
observe the physical space?” As pointed out by Meguerdichian
et al. [23], coverage can be regarded as a measure of the quality of
service of the sensing function in WSNs. Therefore, the CP is
studied thoroughly and there are many exact or approximate
methods to solve it (e.g., [6,14]). Also an interesting line of
research has emerged, where the CP is modeled as a mixed-
integer linear programming (MILP) formulation [7,2].

In a typical WSN, each sensor collects and processes data, and
tries to send this information to a sink. Since sensors’ commu-
nication ranges are limited, the data packets carrying the sensed
information usually have to follow multi-hop paths. The routing
problem (RP), which involves finding the most energy efficient
sensor-to-sink routes for a given set of sensor and sink locations,
is an essential problem in WSNs because data transmission is an
energy consuming task [1].

Determining the optimal sink locations is also an important
design issue to extend the lifetime of a WSN. The average number
of hops to reach a sink becomes a critical factor that is affected by
the sink locations. In a significant number of research studies, the
sink locations are assumed to be determined a priori [18,20].
However, the energy consumption and thus the lifetime of the
WSN can be improved by finding the best location(s) of the
sink(s) since these locations have an impact upon the sensor-to-
sink data transmission routes [3]. The joint optimization of sink
locations and data routing is addressed in the sink location and
routing problem (SLRP) that has received considerable attention
in the literature as it results in a more efficient network design
[13,25,17].

In this work, we jointly consider the coverage, sink location,
and data routing problems in heterogeneous WSNs. We refer to
this integrated problem as the coverage, sink location and routing
problem (CSLRP), and develop two mathematical programming
formulations by unifying these three design issues within a single
model. Unfortunately, the resulting MILP formulations can only
be solved for small-sized instances using commercial solvers. For
medium and large-sized instances, we propose a hybrid solution
procedure. In the outer loop, tabu search is employed to find near-
optimal sensor locations satisfying the coverage requirements. In
the inner loop, the remaining sink location and routing problems
are solved using various methods for the sensor locations fixed in
the outer loop. This integrated problem is also addressed in a very
recent work [16]. However, the proposed benchmark model has a
major flaw, which makes the results given in that work unreli-
able. The flaw stems from the fact that the data flow balance
equations in the MILP formulation are erroneous.

The rest of the paper is organized as follows. In the next
section, we introduce the CSLRP and its mathematical program-
ming formulations. The hybrid solution approach is explained in
Section 3, while experimental results are reported in Section 4.
We conclude the paper in Section 5 with some remarks.

2. Problem definition and mathematical programming
formulations

The objective of the CSLRP is to design a WSN such that the
total available battery energy of the sensors in the WSN is spent
in the most efficient way for transmitting (routing) data packets
from sensors to sinks. This also helps to prolong the lifetime of the
WSN as much as possible. Before we present the mathematical
programming formulations for the CSLRP, we describe the pro-
blem while defining the decision variables common for both
formulations.

The CSLRP is defined in a two-dimensional sensor field A/ with
|V | =N points. We assume that every point of sensor field is a

candidate location for a sensor and/or sink, and there are || =K
sensor types, where K denotes the set of sensor types. Each sensor
type has a different cost, sensing and transmission range. The cost
of deploying a type-k sensor is equal to hg, and the available
budget for sensor deployment is H monetary units. Given that
there may be obstacles in the terrain where the sensors are
deployed, it is expected that there is inherent uncertainty asso-
ciated with sensor readings and thus sensor detections must be
formulated probabilistically as discussed in Brooks and lyengar [4].
Furthermore, it is also expected that sensors closer to a point in
the sensor field generally provide better coverage. To account for
both issues, we adopt probabilistic detection and let parameter g,
denote the probability that a type-k sensor deployed at point i
generates sensing data for point j. These probabilities can be
calculated for each (i,j,k) triplet by adopting an appropriate sensor
terrain model. A common approach is to assume that a target at
Euclidean distance d; from a type-k sensor is detected with
probability g = e~ [9,10], where o is a decay parameter that
determines the rate at which the detection probability of a type-k
sensor decreases with the distance. When binary decision vari-
ables are defined as s;, =1 if a type-k sensor is deployed at point
ie N, and sy = 0 otherwise, (1—q;;si) gives the probability that a
target located at point j is missed by a type-k sensor deployed
at point i. Hence, under the assumption that sensing probabilities
g are independent, the restriction which ensures that the
overall miss probability at point j does not exceed a given
maximum allowable level O0<tj<1 can be written as
ITi e aTTk e «(1=GieSix) < t;. Although this inequality is non-linear
in binary decision variables sy, it can be linearized as follows.
When we take the natural logarithm of both sides of the inequal-
ity, we obtain ;> In(1—gysiy) <Int;, which can be
rewritten as > ;. > e IN(1—gy)si <Intj. This follows from
the fact that In(1-gsi)=0 when s; =0 and In(1—qsi) =
In(1-q;x) when sy =1. By multiplying both sides of the last
inequality with —1 and defining coefficients a;; = —In(1—qy;)
and b;=—Intj, we obtain }7; >y cijkSik = bj, which can be
regarded as a coverage constraint with b; representing a mini-
mum coverage threshold. We would like to note that ay; and b;
are always positive.

There are two other modeling alternatives for the sensor
coverage models in the literature. In perfect detection (see, for
example, [2,8,22]), where a sensor always detects a target
remaining in its range, a; =1 if a type-k sensor deployed at
point i covers (senses) point j, and a, = 0 otherwise. The coverage
threshold parameter b; represents the number of sensors that
need to cover point j. In imperfect detection (see, for example,
[22]), ajj is called the coverage intensity for point j provided by a
type-k sensor at point i and b; coverage intensity threshold at
point j. The coverage constraint in imperfect sensing ensures that
the total coverage intensity at all points of the sensor field has to
exceed the threshold level b;.

Given that the number of sinks to be installed is equal to p, we
propose two different MILP formulations for the CSLRP. Two of
the decision variables are shared by both of the formulations. The
first one is the binary variable s; which has been introduced
before. The second one is the binary variable y; which is equal
to one if a sink is installed at point j, and zero otherwise. It
is assumed that a point in the sensor field can accommodate
a sensor and a sink together. Furthermore, different types of
sensors can be placed at the same point. The parameters and
common decision variables used in the models are shown in
Table 1 for a quick reference. Besides these two sets of decision
variables, there are others that have to be defined depending on
the formulation. The first formulation, CSLRP-1 is an arc-flow
based network design model, where the total routing energy is
computed by summing up the energy consumptions on the arcs
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Table 1
Parameters and common decision variables.

Parameter Definition

N The number of points in the sensor field

K The number of sensor types

[ The coverage intensity at point j by a type-k sensor
deployed at point i

b; The coverage threshold at point j

d;j The Euclidean distance between points i and j

ol The rate at which the detection intensity of a type-k sensor
decreases

hy The cost of deploying a type-k sensor

H The available budget for sensor deployment

p The number of sinks to be installed

Decision variable Definition

Sik One if a type-k sensor is deployed at point i, zero otherwise
Y One if a sink is installed at point j, zero otherwise

between all pairs of points in the sensor field. The energy
consumption on an arc from point i to point j is a function of
both the distance and amount of data flow between the two
points. CSLRP-1 can be used to efficiently solve small instances of
the CSLRP using a commercial MILP solver. The second formula-
tion, CSLRP-2, is a facility location model, where the total routing
energy is calculated in terms of paths connecting sensors to sinks.
Although CSLRP-2 has more decision variables and constraints
than CSLRP-1, it lends itself to an efficient heuristic algorithm to
solve large instances of the CSLRP, as will be shown later.

2.1. A single-commodity network flow formulation

In this formulation, two sets of decision variables are defined
for the data flows. uy, represents the amount of sensor-to-sensor
flow from a type-k sensor at point i to a type-I sensor at point j.
Since it is possible to deploy different types of sensors at the same
point, variables u;;y do exist in the formulation. v;;, represents the
amount of sensor-to-sink flow from a type-k sensor at point i to a
sink at point j #i. Parameters ¢y represent the energy expendi-
ture for unit data flow from sensors to sensors and from sensors
to sinks. They are the objective function coefficients computed
using the formula cijkzykdg-. Here, 7, is the amount of energy
spent by a type-k sensor for sending one unit of data flow along a
unit distance, and 0 is the path loss factor whose value is usually
in the interval [2,4] (see [5]). Variable w; is used to absorb
the total data inflow to a point i when a sink is installed there.
The single-commodity network flow formulation CSLRP-1 is given
below:

min Z Z Z chjkulﬂd + Z Z chjkvljk (1)

1ej\l<s}C]eN fen ieNkeKjeN

subject to ZZa,—jksikzbj_ jeN @)
ieNkek
>3 s o
ieNkeKk
Z Z Z Ujitk + ZZVJH + Zslk
jEjWEKm,kT’J i Vlek
=D D Uty Y Vigtwi, ieN @)
JE'NIEKMATAIJ iNkek
Zzuukl+ZV1ﬂ<<NKs,k, ieNkek 5)
jeN 1k

ol L i

> v <NKy;, jeN (6)
kK

w; <NKy;, ieN (7)
> Yi=p ®)
jen

Ujie >0, ijeN;kleK : k#lfori=j 9
V=0, i#jeN;keK (10)
w;>0, ieN 11
Vosice (0,1}, ieN;kek (12)

The objective function (1) minimizes the total routing energy
which consists of the sensor-to-sensor and sensor-to-sink routing
energies. Coverage constraints (2) ensure that a sufficient number
of sensors are deployed so that the detection probability at all
points in the sensor field is greater than or equal to the coverage
threshold. Constraint (3) guarantees that the total cost of the
sensors does not exceed the budget. Constraints (4) are the flow
balance equations for each point i. They guarantee that the total
inflow from other sensors to point i and the data generated by the
sensor(s) at this point must either be equal to the total outflow to
other points with sensors and/or a sink or be absorbed at the sink
installed at point i. Constraints (5) state that sensor-to-sensor or
sensor-to-sink flow from a type-k sensor at point i can only occur
if such a sensor is deployed there. The upper limit is obtained by
considering that the total data generated in the sensor field
cannot be more than NK, where the limit is obtained when all
points are deployed with all types of sensors. Constraints (6)
ensure that there is no sensor-to-sink flow to point j if there is no
sink at this point. Constraints (7) link variables y; and w; by
guaranteeing that no data packets can be absorbed at a point
without a sink. Constraint (8) sets the number of sinks to be
installed equal to p. Finally, constraints (9)-(11) are the non-
negativity restrictions on continuous variables, while constraints
(12) are binary restrictions on discrete variables y; and sj.
Observe that there are O(N2K?) variables and O(NK) constraints
in the formulation.

At this point it may be worthwhile to list two observations
about this formulation

1. When variable vy, i,je NV, ke K is positive on the right-hand
side of balance equation (4), there is an outflow from type-k
sensor deployed at point i to a sink at another point. This
implies that there is no sink at point i and w; =0, because
otherwise (i.e., there exists a sink at point i), there would not
be a sensor-to-sink flow to a sink at another point in an
optimal solution due to the fact that c;; = 0 when d;; =0.

2. Since c¢j; =0, there will always be an alternative optimal
solution with respect to the flow variables u and vy if it is
optimal that a sink is installed at a point where a sensor is
deployed. Note that the total inflow from other sensors to such
a sink can be either direct or through sensor k placed at that
point. Namely, either Z,’;,YZ,E Wik =0 and le;{Zzg Vit >0
or Ef;‘,'Zle cUjik >0 and E;,«,Z,e;cvju =0. In either case, w; is
equal to the total inflow to point i plus one (the data generated
by the sensor at this point).

We notice that the flow balance equations in [16] are not
correct, because they cannot handle the cases where two types of
sensors are deployed at the same point or a sink is co-located
with a sensor. We solve CSLRP-1 by means of a general-purpose
MILP solver in order to compute optimal values that can be used
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in assessing the accuracy of the proposed heuristics. The inte-
grated problem we deal with in this paper can also be formulated
as a multi-commodity network flow model where each sensor is
assumed to generate a commodity, which makes the total number
of commodities N x K. We do not consider this type of formulation
here since it is computationally very demanding.

2.2. An assignment formulation

In this second formulation, we use binary variables x;;, where
x;x =1 if a type-k sensor at point i is assigned to a sink at point j,
and x;; =0 otherwise. To compute the corresponding routing
energy we need to know the arcs that are used in this assignment,
i.e., the arcs of the path connecting the sensor at point i to the sink
at point j. For this purpose, we introduce binary variable z}frfl
which is equal to one when arc (I,m) is used in the assignment of a
type-k sensor at point i to a sink at point j. Similar to the first
formulation, ¢, represents the flow energy between points [ and
m when there is a type-k sensor at point [ The resulting
mathematical model CSLRP-2 is given below:

min >N N ST S ezl (13)

ieNjeNleNmeNkeK

subject to Z Zaijksik >b, jeN (14)
ieNkek

Zzhksik <H (15)
keKieN

foﬂ(:sikv ieN,keK (16)
jeN

Xjk <Yj, LjeN,kek 17)
> vi=p (18)
jeN

Xiji» I=i

ZZZL{*ZZ%= 0, le M\{ij}, ijleN,i#jkek (19)
meN meN _Xijkv I=_]

S Ak <e, ijleNizjkek 20)
meN

elﬁzslk, leN 21)

ke
Kel > ZS"" leN (22)
kek

>0, ijlmeNkek 23
SikYinXijier € {0,1}, ijle N ke K (24)

The objective function (13) minimizes the total routing energy
over all arcs. Coverage constraints (14) and the budget constraint
(15) are the same as before. Assignment constraints (16) ensure
that each sensor is assigned to one and only one sink. Constraints
(17) prohibit any assignment to point j if there is no sink at that
point. Here we prefer the strong version of this constraint set,
which can be replaced by >~ > ke Xk <NKy; to obtain an
equivalent formulation. This version has fewer constraints, but it
yields a weaker LP relaxation. Constraint (18) sets the number of
sinks to be installed in the sensor field to p. Constraints (19) are
the flow balance constraints. If there is an assignment X, then
there must be a unit outflow from the source (type-k sensor at
point i), a unit inflow to the destination (sink at point j), and for all
other intermediate points the total inflow must be equal to the

total outflow. Constraints (20)-(22) together ensure that an arc
(I,m) can only be used if there is a sensor at the tail [ of arc (I,m).
Note that if there is no sensor at point I (i.e., > . S = 0), then
constraint (21) forces e, to be zero. On the other hand, if there is at
least one sensor at point [, then constraint (22) makes sure that
e;=1. Recall that the only possibility of having more than one
sensor at some point is that the deployed sensors are of different
types, and there can be at most K sensors at a point. Constraints
(23) and (24) are, respectively, non-negativity and binary restric-
tions on the variables. Note that although z}{ﬁ are non-negative
variables, at the optimum solution they only take binary values.
This is due to the fact that constraints (19) are the flow
conservation equations for the shortest path problem when
Xijk = 1.

In this formulation, the number of variables is O(N*K) and the
number of constraints is O(N3K). This means that it is a larger
formulation than CSLRP-1. Computational experiments also
revealed that it is less efficient than CSLRP-1 when both formula-
tions are solved by a commercial state-of-the-art MILP solver
within a time limit of 4 h. On the other hand, CSLRP-2 has an
important property which makes it very useful for computing
approximate solutions of CSLRP as will be explained in the next
section: when the sensor locations are given, CSLRP-2 reduces to
the classical p-median problem.

3. A hybrid solution procedure

CSLRP is computationally very difficult and solving any of the
proposed formulations by a general-purpose MILP solver usually
generates an optimal solution only for small instances. For
medium and large instances there is a need for efficient heuristic
methods. In this paper, we propose a hybrid solution procedure
for the solution of the CSLRP which utilizes the CSLRP-2 formula-
tion. The outer loop of this procedure uses tabu search to identify
the best sensor locations satisfying the coverage and budget
requirements, while in the inner loop sink locations and data
flow routes from sensors to sinks are determined in the best way
for the sensor locations fixed by the outer loop.

Given a set of sensors that satisfies the coverage and budget
constraints (i.e., sj are fixed), both CSLRP-1 and CSLRP-2 can be
re-written in a simpler form by dropping the s; variables and
some of the constraints. For CSLRP-2 in particular, constraints
(14), (15), (19), (20), (21), and (22) can be removed. The resulting
formulation SLRP, which is given below, deals with the problem of
locating a prespecified number of sinks and assigning the given
set of sensors to these sinks. In this formulation, S denotes the set
of points in the sensor field where sensors are deployed, and X; is
the set of sensor types deployed at point i:

SLRP: min > > 3 giexiic (25)

ieSkeKjeN

subjectto > xj =1, ieSkek; (26)
jeN

Xijk < Yj» ieSkeKijeN 27)

> yi=p (28)

jeN

Xijk Yj € {0, 1}, ieSke ICi,j eN (29)

As can be noticed, SLRP is the formulation of the well-known
p-median problem where gj;'s, which are the objective function
coefficients, constitute the energy consumption corresponding to
the minimum energy path between a type-k sensor at point i and
a sink at point j. In other words, they are simply the sum of the
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energy consumptions on the arcs that forms the shortest path in
terms of energy. Note that when the locations and the types of the
deployed sensors are given, we can perform a preprocessing step
to determine the minimum energy path from each sensor to every
candidate sink location. These paths can be determined by solving
a shortest path problem between the given sensor locations and
all the points in the sensor field since all points are candidate sink
locations. This task can effectively be carried out using a many-to-
many shortest path algorithm such as the one by Floyd [12].

Tabu search (TS) is a metaheuristic algorithm that guides the
local search to prevent it from being trapped in premature local
optima or cycling [15]. This is achieved by prohibiting the moves
that cause to return to previously visited solutions throughout a
certain number of iterations. We use TS to make a search in the
solution space of sensor locations that are feasible with respect to
coverage and budget constraints. The objective values corre-
sponding to these feasible sensor locations are computed by
solving the SLRP using three different methods which provide
the routing of the data flows from sensors to sinks in the best
possible way. Hence, we propose actually three heuristics that
differ in the inner loop of the hybrid solution procedure.

We apply an easy and quick strategy to find the initial sensor
deployment. It is based on the greedy heuristic introduced by
Altinel et al. [2], and deploys sensors at minimum cost without
violating the budget constraint by reducing the maximum level of
undercoverage. At each iteration of the heuristics, we generate
candidate neighborhood sets by using the following Add, Drop,
and Swap moves: 1-Add, 2-Add, 1-Drop, 2-Drop, 1-Swap, and
2-Swap. While one and two sensors are added randomly to the
existing set of sensors in the 1-Add and 2-Add moves, respec-
tively, 1-Drop and 2-Drop moves involve the removal of one and
two sensors, respectively. 1-Swap and 2-Swap moves, on the
other hand, perform a random exchange of the locations of one
and two sensors, respectively. Effectively, this corresponds to
randomly dropping an existing sensor (two existing sensors), and
then adding a new sensor (two new sensors) leaving the total
number of sensors unchanged. If the new sensor set obtained by
any move is feasible, the objective value associated with it is
computed by solving the corresponding SLRP model. In a hetero-
geneous WSN, where there exist sensors with different sensing
ranges and costs, the above-mentioned moves may cause an
infeasibility by violating the coverage and/or budget constraints.
When such an infeasibility is encountered, that move is not
accepted. The total number of neighbors generated by all the
moves is equal to r. In our experiments we use different r values
to work with different neighborhood sizes that may affect the
quality of the solutions obtained by the proposed heuristic. While
generating these neighbors, those moves that are in the tabu list
are not allowed for a certain number of iterations unless the
corresponding objective value is better than the objective value of
the incumbent.

Since the SLRP belongs to the class of the p-median problem, it
can be solved by one of the available solution methods that are
known to be efficient for this problem type. To this end, we choose
three methods. Two of them are the Lagrangean heuristic (LH) and
the nested-dual heuristic (NDH). The remaining method, greedy
heuristic (GH), is a fast heuristic which is also easy to implement. As
a result, we have three TS heuristics, which differ in the inner loop of
the hybrid solution procedure when solving the SLRP. We refer to
them as TS-LH, TS-NDH, and TS-GH. Below, we briefly overview LH,
NDH, and GH that are used to solve the SLRP.

In our application of LH, we relax the assignment constraints
(26) in the SLRP defined by expressions (25)-(29) with unrest-
ricted Lagrange multipliers. The resulting Lagrangean subproblem
decomposes with respect to each grid point je N. Each of these
subproblems can be solved by inspection, and their objective

values can be ranked. The total of the sum of the p smallest
objective values and the sum of the Lagrange multipliers con-
stitutes a lower bound for the SLRP. Subgradient optimization is
used to solve the Lagrangean dual problem, whose objective is to
find the largest lower bound. At each iteration of the subgradient
optimization procedure, an upper bound is computed on the
optimal objective value of the SLRP. It is used to determine the
value of the step length which is necessary to update the Lagrange
multipliers. The upper bound is obtained by constructing a
feasible solution to the SLRP by making use of the binary location
variables given by the Lagrangean subproblem that provides the
lower bound.

The NDH heuristic was proposed by Mirchandani et al. [24] to
solve the p-median problem. This heuristic uses the approach
developed by Erlenkotter [11] for the solution of the uncapacitated
facility location problem. Erlenkotter’'s DUALOC method is a simple
ascent adjustment procedure that solves the LP relaxation of the
Lagrangean dual problem in which the median constraint (28) is
dualized. This enables the computation of a lower bound on the
optimal value. Then, a heuristic is used to obtain a feasible solution
to the p-median problem. The details of the application of LH and
NDH heuristics to the SLRP can be found in Giiney et al. [17].

The greedy heuristic (GH) for the p-median problem, sug-
gested by Kuehn and Hamburger [19], is initialized with an empty
set of facility locations with an infinite objective value. Then
facilities are added to this set one at a time by choosing the
facility whose addition results in the largest reduction in the
objective value.

In TS-LH, TS-NDH, and TS-GH, we use two termination criteria:
the maximum number of iterations and the maximum number of
iterations without any improvement in the incumbent’s objective
value. In the TS-LH, TS-NDH, and TS-GH heuristics, num_iter and
num_nonimp_iter are counters that are used to keep the total
number of iterations and the number of iterations without an
improvement in the incumbent (the best objective value obtained
so far). The parameters max_iter and max_nonimp_iter are, respec-
tively, the limits for num_iter and num_nonimp_iter. Obj is the
objective value of the current sensor set obtained by solving the
SLRP. Obj_Best_Neigh is the best solution among all the neighbor-
ing solutions at a given iteration and Obj* is the best solution
obtained throughout the algorithm. Finally, max_tabu_tenure is a
parameter that sets the number of iterations during which a
solution is kept in the tabu list. The basic steps of the TS heuristics
are given in Appendix using the aforementioned definitions.

4. Computational experiments

In this section, we report the accuracy and efficiency of the
TS-LH, TS-NDH, and TS-GH heuristics. As the basis of our compar-
isons, we take the objective value of the best feasible solution
provided by CPLEX 11.2 when solving the CSLRP-1 within
the allowed time limit of 4 h (14,400 s). By letting zp to denote
the best objective value CPLEX computes for an instance and
X € {zLn,2nDH.ZcH ]} Tepresenting the best objective value obtained
by the proposed methods for the same instance, we can measure
the accuracy of the methods by computing the percent deviations
from zp according to the formula:

X—Z[p
Zip

100 x (30)
We also report the CPU times to assess the efficiency of the
different solution methods. All experiments are carried out on a
Dell PowerEdge 2400 computer with two 64-bit, 2.66-GHz Xeon
5355 Quad Core processors and 28 GB memory.
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4.1. Instance generation

We consider an open area without many obstacles as the
sensor field and choose a path loss factor of 0 = 2. The sensor field
is assumed to consist of N =n x n grid points in a lattice structure
where each point is a candidate site for the deployment of sensors
and locating the sinks. We generate 14 data sets where n takes
values from the set {3-15,20}. Later on, we also assess the
performance of the solution methods on a set of test instances
where the points are distributed uniformly within the sensor field
rather than being grid points. The coverage threshold b; is set to
0.99 for all points, while the value of the available budget H for
sensor deployment is determined as follows. First, the minimum-
weight coverage problem is solved to optimality where the
weights correspond to the unit costs of the sensors. Then, the
optimal objective value gives the minimum budget level H,,;, that
is required to obtain a sensor network where all the grid points
are covered. In other words, to prevent the infeasibility of the
CSLRP we have to set the budget H at least equal to H,;,. For the
experiments, where we assess the accuracy and efficiency of
the solution methods, we set H = 1.5H;;. In a subsequent section,
we carry out sensitivity analysis with respect to the parameters b;
and H. We do this by changing the value of H to various multiples
of Hy,i, and varying the coverage threshold b;.

In our experiments, we consider two types of sensors with
different characteristics. First, their costs are different as follows:
h1 =10 and h; =20. Consistent with their costs, the following
values are assigned to the coverage parameter o, that determines
the rate at which the detection intensity of a type-k sensor
decreases with the distance: o; =0.5 and «, = 0.4. Note that the
more expensive sensor has a lower «-value. The parameter ), is
the amount of energy spent by a type-k sensor for sending one
unit of data for unit distance. It is chosen as y; =10nAh and
v, =20nAh for the two types of sensors, respectively [21]. The
ampere-hour (A h) (its sub-units are milliampere-hour (mA h)
and nanoampere-hour (nA h)) is a unit of electric charge, and is
frequently used in measurements of electrochemical systems
such as electroplating and electrical batteries. For example, a
typical AA type of battery contains 2200 mA h of electric charge.

The value of the path loss factor 0 that is used in the formula
Cijk = ykd?j (which computes the energy consumption of the
sensors) is set to two. In a real-life application, the number of
sinks to be installed is quite small. Therefore, we set p=1, p=2,
and p=3 in the experiments.

Table 2
Comparison of the results when p=1.

4.2. Performance of the hybrid solution procedure

As mentioned before, the outer loop of our hybrid solution
procedure calls for tabu search to identify the best sensor locations
satisfying the coverage and budget requirements. The inner loop
involves solving the sink location and routing problem SLRP
formulated as a p-median model using three methods (LH, NDH,
and GH) for each sensor location set fixed in the outer loop by tabu
search. Among these three methods, LH is computationally the most
intensive one, whereas GH is the fastest consuming the smallest
amount of CPU time. Therefore, when determining the size of the
neighborhood at each tabu search iteration we consider the differ-
ence in the efficiency of the p-median heuristics. As a result, TS-LH
has the smallest neighborhood size (r=50) where 10 solutions are
generated randomly in the neighborhood of the current solution
using each of the 1-Add, 2-Add, 1-Swap, and 2-Swap moves, while
five solutions are generated using the 1-Drop and 2-Drop moves. For
TS-NDH, we double the number of neighboring solutions in each
category which gives rise to a neighborhood size r=100. TS-GH, due
to its CPU time efficiency, has the largest neighborhood with r=150
where the number of solutions generated by each move is three
times as large as that of TS-LH. The other parameters of the TS
heuristics are set to the following values: max_iter =500 and
max_nonimp_iter = 30 iterations.

First, we consider the case with one sink (p=1), and solve each
of the 14 test instances five times. Since the neighboring solutions
are generated randomly at each tabu search iteration, our heur-
istics may yield a different solution for each run. Therefore, we
report in Table 2 both the best and average results generated by
five runs for each test instance. The first column includes the
number of points N in the sensor field. The second column shows
the amount of energy spent corresponding to the best feasible
solution obtained within a time limit of 14,400 s when the CSLRP-
1 is solved using CPLEX 11.2. CPLEX can provide optimal solutions
only for problems with N < 49 points. The values marked with “x”
are the corresponding optimal values. The remaining entries of
this column are the objective values of the best feasible solutions
obtained within the time limit. The third to fifth columns display
the percent deviations of the best and average objective values
obtained by TS-LH, TS-NDH, and TS-GH heuristics from the
objective value found by solving CSLRP-1 using CPLEX. The last
four columns give the CPU times spent by the methods. As can be
seen by the best percent deviations, 6.9%, 6.3%, and 4.1% more
energy is spent on the average when the WSN is setup by making

N Energy Best % dev. (avg. % dev.) CPU time (s)

CSLRP-1 TS-LH TS-NDH TS-GH CSLRP-1 TS-LH TS-NDH TS-GH
9 5% 0.0 (12.0) 0.0 (4.0) 0.0 (8.0) 0.1 9.8 0.9 0.1
16 11* 9.1 (16.4) 9.1 (14.5) 2 (21.8) 0.2 61.4 4.2 0.6
25 16* 0.0 (2.5) 0.0 (1.3) 0.0 (1.3) 1.2 399.3 77.8 24.2
36 30* 16.7 (24.0) 10.0 (13.3) 3.3(7.3) 241 726.1 171.3 48.2
49 44* 22.7 (33.2) 15.9 (18.6) 22.7 (24.5) 901.4 886.4 382.5 89.5
64 75 6.7 (10.1) 6.7 (8.8) .7 (6.4) 14,400.0 1565.5 667.2 205.3
81 96 10.4 (12.9) 15.6 (16.7) .2 (5.6) 14,400.0 3945.9 720.5 130.9
100 132 6.8 (9.2) 6.1 (6.7) .5 (5.8) 14,400.0 6272.3 1217.9 238.1
121 177 10.7 (13.4) 13.6 (16.5) .3 (8.6) 14,400.0 8991.4 1802.5 384.6
144 225 12.0 (13.2) 14.7 (15.6) .2 (11.3) 14,400.0 12,016.2 4384.7 607.3
169 309 8.7 (9.7) 8.1 (9.0) .6(4.3) 14,400.0 14,400.0 5979.4 990.8
196 440 -5.0(-4.2) —0.9 (0.6) -77(-72) 14,400.0 14,400.0 14,400.0 1378.1
225 532 0.2 (0.8) -1.5(-0.7) —-4.5(-2.9) 14,400.0 14,400.0 14,400.0 2062.2
400 1750 -1.8(-04) -92(-7.1) —6.6 (—2.9) 14,400.0 14,400.0 14,400.0 8194.1
Avg. 274.4 6.9 (10.9) 6.3 (8.4) .1 (6.6) 93234 6605.3 4186.4 1025.3




1536

the decisions of sensor deployment, sink location and routing
using the three heuristics. TS-GH outperforms the other heuristics
in terms of accuracy, while it is also the best in terms of efficiency.

The results for p=2 are displayed in Table 3. As is the case with
p=1, CPLEX cannot find any optimal solution for test instances
with N > 49 within the allowed time limit. It can be observed that
the best performing heuristic in terms of accuracy is TS-NDH with
an average of 4.1% deviation, while TS-GH is once more the most
efficient. Note that there are some negative values for percent
deviations. They indicate that the heuristic solution is better than
the best feasible solution CPLEX computes in 4 h.

Results given in Table 4 for p=3 indicate that the best
performing heuristics with respect to both criteria remain the
same. With regard to the efficiency, we can conclude that solving
the CSLRP-1 by CPLEX requires 11.5 times as much time as
needed by the fastest heuristic TS-GH, on the average.

When we compare the objective values for the same test
instances (i.e., instances with the same number of grid points N),
we observe that the energy consumptions decrease as the number of
the sinks increases. This is an expected result because when there are
more sinks in the WSN, each sensor is, on the average, closer to the
sinks, and thus less routing energy is consumed by the sensors.

Table 3
Comparison of the results for p=2.
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4.3. Sensitivity analyses

We conduct further experiments to investigate the effect of
three factors on the results: the available budget, the coverage
threshold, and the configuration of the candidate points in the
sensor field. Each of these factors is considered separately in the
following.

4.3.1. The effect of the budget on the routing energy

The available budget H allocated for sensor deployment is a
significant factor in the WSN design. Note that in our experiments
we set H = uHp, with g = 1.5 where Hpy;, is the minimum budget
level that is required to obtain a sensor network in which all grid
points are covered. To investigate the effect of the budget on the
routing energy spent, we set u to various values between 1.01 and
4.0, and solve the CSLRP-1 by CPLEX for five test problems from
N=9 to N=49. Note that these are the instances that are solved to
optimality by CPLEX at the default budget level as given in
Tables 2-4. Fig. 1 displays at each budget level H the average
routing energy spent in the WSN over the test problems for p=1,
p=2, and p=3. As can be seen from the plots in Fig. 1, the routing

N Energy Best % dev. (avg. % dev.) CPU time (s)

CSLRP-1 TS-LH TS-NDH TS-GH CSLRP-1 TS-LH TS-NDH TS-GH
9 3* 0.0 (13.3) 0.0 (6.7) 0.0 (6.7) 0.1 20.3 0.7 0.1
16 6* 16.7 (30.0) 16.7 (26.7) 16.7 (26.7) 0.8 52.6 2.9 0.6
25 9* 11.1 (22.2) 0.0 (8.9) 11.1 (17.8) 53 7353 47.0 24.4
36 18* 5.6 (12.2) 0.0 (7.8) 5.6 (10.0) 500.7 1299.8 1771 58.2
49 25* 20.0 (23.2) 8.0 (10.4) 72.0 (76.8) 3995.3 1638.0 229.1 123.5
64 40 12.5 (16.0) 12.5 (16.5) 32.5 (43.0) 14,400.0 2613.5 453.7 232.2
81 55 30.9 (38.9) 20.0 (23.6) 32.7 (37.5) 14,400.0 3234.6 387.1 136.8
100 85 14.1 (17.6) 14.1 (16.9) 18.8 (22.1) 14,400.0 5255.4 606.8 245.9
121 138 1.4 (6.4) —0.7 (4.5) 0.0 (3.5) 14,400.0 7655.3 991.9 408.3
144 171 11.1 (14.7) 10.5 (12.4) 11.7 (14.3) 14,400.0 10,660.2 1609.5 689.6
169 232 0.4 (3.0) —2.6 (0.3) 1.3 (2.5) 14,400.0 14,400.0 2411.3 919.9
196 288 2.1 (4.7) 5.2 (7.7) -0.3(24) 14,400.0 14,400.0 3136.1 1273.4
225 392 —-41(-1.2) —-12.8 (-9.5) -2.6(1.3) 14,400.0 14,400.0 45711 1790.5
400 1010 -11.0 (-8.7) —-14.2 (-13.4) —-14.7 (-13.7) 14,400.0 14,400.0 14,400.0 7383.5
Avg. 176.6 7.9 (13.7) 4.1 (8.5) 13.2 (17.9) 9578.7 6483.2 2073.2 949.1

Table 4
Comparison of the results for p=3.

N Energy Best % dev. (avg. % dev.) CPU time (s)

CSLRP-1 TS-LH TS-NDH TS-GH CSLRP-1 TS-LH TS-NDH TS-GH
9 1* 0.0 (20.0) 0.0 (0.0) 0.0 (20.0) 0.1 13.2 0.9 0.2
16 4* 25.0 (35.0) 0.0 (10.0) 25.0 (30.0) 52 54.6 4.9 1.0
25 7* 0.0 (8.6) 0.0 (5.7) 14.3 (17.1) 284 471.3 55.4 30.8
36 12* 16.7 (23.3) 8.3 (15.0) 16.7 (26.7) 1968.9 1284.1 89.1 49.2
49 18* 16.7 (24.4) 11.1 (16.7) 11.1 (15.6) 13,985.6 1694.4 2114 1243
64 27 29.6 (36.3) 18.5 (23.0) 37.0 (444) 14,400.0 23934 394.1 199.7
81 39 23.1 (29.7) 17.9 (26.7) 23.1(29.2) 14,400.0 2784.8 308.1 133.1
100 53 28.3 (36.2) 17.0 (23.0) 24.5 (30.2) 14,400.0 5140.1 531.5 242.7
121 81 9.9 (14.1) 6.2 (9.6) 11.1 (15.1) 14,400.0 8315.2 873.7 366.4
144 114 11.4 (16.5) 3.5(7.4) 2.6 (6.8) 14,400.0 10,155.1 1374.5 581.2
169 161 -3.1(-0.5) -5.0(-1.5) -5.6(—-3.1) 14,400.0 14,400.0 1951.8 863.1
196 236 -6.8(—-4.2) -11.0 (-7.5) -10.6 (-7.7) 14,400.0 14,400.0 29523 1210.6
225 246 1.6 (6.7) 0.4 (3.8) 0.8 (5.4) 14,400.0 14,400.0 4382.6 1602.5
400 853 —18.1 (-14.2) —26.1(-19.3) —24.6 (—-204) 14,400.0 14,400.0 14,400.0 7356.8
Avg. 1323 9.6 (16.6) 2.9 (8.0) 9.0 (15.0) 10,428.8 6421.9 1966.5 911.5
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Fig. 1. The effect of the budget on the routing energy.

energy consumption first decreases as the budget level increases.
This initial reduction in the energy is due to the increased number
of deployed sensors. Note that a larger number of sensors can be
deployed due to the higher budget levels. This, in turn, decreases
the average distance between sensors and sinks, and a smaller
average distance reduces the routing energy spent. Being able to
deploy more sensors due to a higher budget availability does not
contribute to a reduction in the routing energy after a certain
point, however, because the number of data packets transmitted
from sensors to sinks also increases. This latter factor leads to an
increase in the routing energy. Hence, the routing energy attains
its optimal value at a certain budget level, and remains at this
value for larger budget levels.

4.3.2. The effect of the coverage threshold on the routing energy

The coverage threshold is commonly used as a measure that
shows the quality of service (QoS) in a WSN. Recall that coverage
threshold parameter b; at point j and the maximum allowable miss
probability t; at point j are related to each other, which is given
as bj=—Int;. For example, a value of t;=0.01 corresponds to
bj = —In 0.01 = 4.605. A smaller maximum allowable miss probabil-
ity or equivalently a higher coverage threshold corresponds to a
better QoS since each grid point in the sensor field is then covered at
a larger intensity level. This implies, however, that a large number of
sensors is required to guarantee a high quality of service in a WSN.

We perform experiments with various values of t; ranging
from 0.01 to 0.5, which corresponds to coverage threshold values
b; varying from 4.605 to 0.693. We solve the CSLRP-1 by CPLEX for
the same five test problems used in the investigation of the effect
of different budget levels. Fig. 2 shows at each coverage threshold
level the average routing energy spent in the WSN for p=1, p=2,
and p=3. We can see that the average routing energy increases as
b; increases. The reason lies in the fact that the level of data
transmission and thus the routing energy increases as the number
of deployed sensors in the WSN increases, which stems from the
requirement of a higher coverage threshold. This graph can help a
WSN designer in making a decision about the trade-off between
the QoS required in the application and the consumed energy in
the WSN and thus the lifetime of the WSN.

4.3.3. Randomly generated candidate points for sensors

The assumption of having grid points in a lattice structure as
candidate points within the sensor field may be restrictive in
some WSN applications. Therefore, it may be of interest to assess
the quality of the solutions generated by the heuristics for the
case where the candidate points of the sensors are distributed
randomly within the sensor field. Since TS-NDH is the best
performing heuristic in terms of accuracy, we solve the test
problems only by this heuristic and compare the results with
those obtained by solving CSLRP-1 using CPLEX.

[ ]
n
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T T T T

&
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Fig. 2. The effect of the coverage threshold on the routing energy.

Table 5
Accuracy of TS-NDH with random points.

N p=1 p=2 p=3
CSLRP-1 TS-NDH (%) CSLRP-1 TS-NDH (%) CSLRP-1 TS-NDH (%)
9 1435 0.0 17.6 14.2 10.1 22.8
16 7479 0.1 93.1 1.1 513 5.5
25 30754 0.0 229.7 0.0 147.5 0.5
36 89253 0.0 363.3 0.1 223.2 0.0
49 19,0639 12.1 641.9 1.6 405.9 4.1
Avg. 2.4 34 6.6
Table 6

Efficiency TS-NDH with random points.

N p=1 p=2 p=3

CSLRP-1 TS-NDH CSLRP-1 TS-NDH CSLRP-1 TS-NDH
9 0.4 2.2 0.2 2.1 0.3 2.8
16 30.2 9.3 45.4 6.8 149.8 12.6
25 285.7 111.8 369.8 91.7 2087.7 151.2
36 755.5 317.2 287.1 255.4 6287.9 3121

49 14,400 754.8
Avg. 30944  239.1

14,400 543.6
3020.5 179.9

14,400 749.9
4585.1 245.7

Table 5 contains the energy consumptions obtained by CPLEX and
the percent deviations of the objective values found by TS-NDH from
those of CPLEX for five test problems where the number of candidate
points N varies between 9 and 49. Regarding the solution quality of
our hybrid solution method TS-NDH, we can say that it performs
quite satisfactory. The best percent deviations are 2.4%, 3.4%, and 6.6%
for p=1, p=2, and p=3, respectively. The comparison of the CPU
performances of CPLEX and TS-NDH is displayed in Table 6. As can be
seen, TS-NDH is approximately 13, 17, and 19 times faster than CPLEX
on the average for p=1, p=2, and p=3, respectively.

Notice that when the points in the sensor field are randomly
distributed, the energy spent in the WSN increases considerably for
all three values of p. This increase can be observed in particular for
larger network sizes. For example, the ratio of the energy spent
when candidate points are distributed randomly to the energy
consumed in the case of grid structured candidate points is given
in Table 7. A final analysis can be made regarding the average
solution times when candidate sensor points are grid points versus
randomly generated points. When we compute the average solution
times of the five test instances with a number points 9 <N <49
and p=1,2,3 obtained by CPLEX and TS-NDH using the values in
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Table 7
Increase in the consumed energy for random points.

N Erandom /Egrid
p=1 p=2 p=3

9 29 6 10
16 68 16 13
25 192 26 21
36 298 20 19
49 433 26 23

Table 8

CPU time comparison between grid and random points.

Method p=1 p=2 p=3

Grid Random Grid Random Grid Random
CSLRP-1 185.4 3094.4 900.4 3020.5 3197.6 4585.1
TS-NDH 127.3 239.1 914 179.9 72.3 245.7

Tables 2-4 and compare them with those in Table 6, we conclude
that the CPU times attained by CPLEX and TS-NDH increase in the
case of randomly generated points as shown in Table 8.

5. Conclusion

In this work, we study the joint optimization of point coverage,
sink location, and data routing problems in wireless sensor
networks. Two new MILP formulations are developed for the
integrated model. The first one involves data routing variables
defined on the arcs of the network, while the second one uses
data routing variables based on sensor-to-sink assignments. Since
the solution of these formulations by means of commercial MILP
solvers is inefficient for medium and large-sized problems, we
develop a hybrid solution procedure based on TS metaheuristic
using the assignment formulation. The outer loop of the hybrid
solution procedure involves determining the best sensor config-
uration by TS, and the inner loop calls for solving the remaining
sink location and routing problem for each sensor configuration
fixed in the outer loop.

We propose three heuristic strategies, TS-LH, TS-NDH, and TS-
GH, which differ in the inner loop that involves the solution of the
sink location and routing problem as a p-median problem.
Experimental results show that this approach can provide close-
to-optimal solutions within much less time than solving the more
efficient one of the two formulations by CPLEX. We also conduct a
sensitivity analysis with respect to three issues and determine
their effects on the total routing energy and computational
performance. These are random distribution of the candidate
points of the sensors, the available budget for sensor deployment,
and the coverage threshold. The results can be utilized by a
wireless sensor network designer while assessing the trade-off
between the total energy expenditure (or network lifetime) and
the number of deployed sensors.
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Appendix A. Pseudocode of the tabu search heuristics

—_

Initialize the parameters and find a starting solution;
While(num_iter < max_iter)

and(num_nonimp_iter < max_nonimp_iter) do

3 Obj_Best_Neigh = 0.

4 Foreach move type i do

5. Calculate size_neigh; and set num_neigh = 0.

6

7

8

N

while num_neigh < size_neigh; do
Generate a new neighbor by move i.
Calculate Obj for this new solution by solving the
SLRP using LH, NDH, or GH.

9. Record this new solution not to regenerate it.
10. If Obj > Obj_Best_Neigh, do

11. Check if the new solution is tabu-active.

12. Ifit is not tabu-active or if Obj > Obj*, then
13. Set Obj_Best_Neigh = Obj

14. If Obj > Obj*, then

15. Set this neighbor as the incumbent

Update Obj* := Obj
Set num_nonimp_iter := 0.

16. End If

17. End If

18. End If

19. num_neigh = num_neigh+1.
20. End While

21. End For

22. Add the best neighboring solution to the tabu list and set
it as the current solution. Generate a random integer
number in the interval [1, max_tabu_tenure] and set it as
the current solution’s tabu tenure. Record num_iter as the
start time of the current solution’s tabu status.

23. num_nonimp_iter .= num_nonimp_iter+1,
num_iter = num_iter+1.

24. End While
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