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Using 1.31 x 10 J/y events collected by the BESIII detector at the Beijing Electron Positron Collider,
we search for the process J/w — Afe™ +c.c. for the first time. In this process, both baryon and
lepton number conservation is violated. No signal is found and the upper limit on the branching fraction
B(J/y — Afe™ +c.c.) is set to be 6.9 x 1078 at the 90% confidence level.

DOI: 10.1103/PhysRevD.99.072006

I. INTRODUCTION

The observed matter—antimatter asymmetry in the uni-
verse composes a serious challenge to our understanding of
nature. The big bang theory, the prevailing cosmological
model for the evolution of the universe, predicts exactly
equal numbers of baryons and antibaryons in the dawn
epoch. However, the observed baryon number (BN)
exceeds the number of antibaryons by a very large ratio,
currently estimated at 10°~10'° [1]. To give a reasonable
interpretation of the baryon-antibaryon asymmetry,
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Sakharov proposed three principles [2], the first of which
is that BN conservation must be violated. Many proposals
predict BN violation within the extended Standard Model
(SM) and beyond. Among them, proposals that evoke the
spontaneous breaking of a large gauge group are especially
appealing. In these models, several heavy gauge bosons
emerge whose couplings to matter explicitly violate both
baryon and lepton number conservation simultaneously.
Although some of the theories, e.g., the SU(5) grand
unification theory (GUT) [3], are excluded by the proton
decay experiment [4], this does not rule out the need to
search for GUTs that allow for BN violation. For example,
the SO(10), the E6 and the flipped SU(5) models all predict
a longer proton lifetime that is not in conflict with the
present data.

Searches for physics beyond the SM (“new physics”)
with collider experiments are complementary to searches
with specifically designed precision detection experiments.
For example, the existence of dark matter is strongly
suggested by cosmological observations [5], and searches
for particle candidates of the dark sector are carried out
both at ete™ [6] and pp [7] collider experiments and in
dedicated direct detection experiments [8]. Similarly,
searches for Majorana neutrinos at flavor factory [9] and
high energy frontier [10] supplement the neutrino-less
double beta decay experiments [11]. The two independent
ways of searching for new physics are fruitfully supporting
each other. Therefore, although there are some searches for
BN violation processes in charm or bottom baryons decay
[12] at the collider experiments, which might provide
different and complementary information from the proton
decay experiments [13], searching for the processes in
quarkonium decay opens a new avenue to study the BN
violation.

In any case, the matter—antimatter asymmetry in the
universe is an observable fact. The absence so far of an
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FIG. 1. Decay diagrams for J/yv — Afe™, where X and Y are
leptoquarks, which carry color charge, fractional electric charge,
and both lepton and baryon quantum numbers [14].

experimental observation of proton decay, which is pre-
dicted by GUT, does not imply by any means that BN is
absolutely conserved. Therefore, an alternative approach to
test the GUT scheme at collider experiments has been
devised. The CLEO Collaboration searched for very rare
processes which violate BN conservation in decays of
heavy-flavor mesons. In particular, they suggested to look
for the process D — pe*, whose branching fraction upper
limit is set at 107 at 90% confidence level (CL). Based on
the huge data sample of 1.3106 x 10° J/y decays pro-
duced at the BESIII experiment, we are able to study the
analogous process J/y — Al e™, as shown in Fig. 1, and
expect the first constraint of BN violation from charmo-
nium decay.

In this paper, we analyze the J/y data sample collected
with the BESIII [15] detector operating at the BEPCII
storage ring [16] to search for the SM forbidden baryon-
lepton number violating decay J/w — Ate™ (charge con-
jugation is implied throughout this paper). Based on this
analysis, we set an upper bound on the rate of J /yr — Afe™.

I1. BESIII DETECTOR AND
MONTE CARLO SIMULATION

The BESIII detector has a geometric acceptance cover-
ing 93% of the 47 solid angle and consists of the following
main components. (1) A small-celled main drift chamber
(MDC) with 43 layers is used to track charged particles.
The average single-wire resolution is 135 ym, the momen-
tum resolution for 1 GeV/c charged particles in a 1 T
magnetic field is 0.5%, and the specific energy loss
(dE/dx) resolution is better than 6%. (2) An electromag-
netic calorimeter (EMC) is used to measure photon
energies. The EMC is made of 6240 CsI(Tl) crystals
arranged in a cylindrical shape (barrel) plus two endcaps.
For 1.0 GeV photons, the energy resolution is 2.5% in the
barrel and 5% in the endcaps, and the position resolution is
6 mm for the barrel and 9 mm for the endcaps. (3) A time-
of-flight (TOF) system is used for particle identification
(PID). It is composed of a barrel made of two layers, each
consisting of 88 pieces of 5 cm thick and 2.4 m long plastic
scintillators, as well as two endcaps each with 96 fan-
shaped 5 cm thick plastic scintillators. The time resolution
is 80 ps in the barrel and 110 ps in the endcaps, providing a
K /= separation of more than 2¢ for momenta up to about

1.0 GeV/c. (4) A muon chamber system for muon detec-
tion is made of resistive plate chambers arranged in 9 layers
in the barrel and 8 layers in the endcaps and is incorporated
into the return iron yoke of the superconducting magnet.

Optimization of the event selection criteria and estimation
of physics backgrounds are performed through Monte Carlo
(MC) simulations of background and signal samples. The
GEANT4-based [17] simulation software BOOST [18]
includes the geometric and material description of the
BESIII detector, the detector response and digitization
models, and also keeps track of the detector running
conditions and performance. The analysis is performed in
the framework of the BESII Offline Software System
(BOSS) [19] which takes care of the detector calibration,
event reconstruction and data storage. Inclusive MC events
of J/w decays are generated by the KKMC [20] generator
around /s = 3.097 GeV, in which the beam energy and
spread are set to the values measured at BEPCII, and initial
state radiation (ISR) is considered. The known J/y decays
are generated by BesEvtGen [21,22] with branching frac-
tions set to the world average values according to the Particle
Data Group (PDG) [23], and the remaining unknown decays
are modeled by Lundcharm [21].

III. DATA ANALYSIS

We search for the decay J/y — Afe™, where the A is
reconstructed through the decay A} — pK~z*. In each
event, at least four charged tracks are required. All charged
tracks are required to satisfy a geometrical acceptance of
| cos 0] < 0.93, where @ is the polar angle of the charged
track. Each track must originate from the interaction region,
defined as R,, < 1.0 cm and |R| < 10.0 cm, where R,,
and R, are the distances of the closest approach to the
interaction point of the track in the xy-plane and z-direction,
respectively. Events with exactly four selected charged
tracks with zero net charge are retained for further analysis.

For charged particle identification, we use a combination
of the energy loss dE/dx in the MDC, time of flight in the
TOF, and the energy and shape of clusters in the EMC to
calculate the CL for the electron, pion, kaon, and proton
hypotheses (CL,, CL,, CLg and CL,). The electron and
positron candidates are required to satisfy CL, > 0.001 and
CL,/(CL,+ CLg+ LC,) > 0.8. Other charged tracks
will be considered a pion, kaon or proton, according to
the highest CL of the corresponding hypothesis.

In order to improve the mass resolution, a kinematic fit
enforcing energy-momentum conservation is performed.
To suppress contamination from other decay modes with
four charged tracks, six different combinations of mass
assignments are considered: pK zte, atxatmT,
KY*K~K*K~, nta~KTK~, #tn~pp and K"K pp. If
the kinematic fit procedure for the pK~z"e™ mass assign-
ment is successful and the goodness of fit for this
hypothesis is the best among these six assignments, then
the event is accepted for further analysis.
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Based on a fit to the simulated Mk, spectrum, with a
double Gaussian function and a Chebychev polynomial to
model the signal and background shape, respectively, the
A} signal window is defined to be (2.27,2.30) GeV/c? in
the pK~x" invariant mass distribution. This corresponds to
a range of +4 times the mass resolution around the A
nominal mass. The detection efficiency is determined to be
(35.43 £0.02)% based on simulated J/y — Afe™ —
pK~nTe™ events, where the A] decay is modeled by a
dedicated generator according to the result of a partial wave
analysis of the decay Al — pK~zt [24]. Besides the
nonresonant 3-body decay process, processes with inter-
mediate states (such as A", A(1600)", excited A states,
excited X states), as well as the corresponding interfer-
ences, are also included in the helicity amplitudes. Parity
conservation is not required since this is a weak decay. The
data and MC simulation for the decay A — pK~zn™" are
compared and found to be in good agreement, based on
567 pb~! of experimental data taken at v/s = 4.599 GeV,
just above the threshold for A, pair production [24]. This
consistency leads to a negligible systematic uncertainty due
to the generator.

The background from J/y decays is investigated using
an inclusive MC sample which has the same size as the J /y
data sample. No background events are found in the signal
window. The background from QED processes is studied
with other simulated MC samples of eTe™ — ¢g, ete™ —
(y)ete  and ete™ — (y)up~ which correspond to 40, 1.5
and 30 times the J/y data, respectively. Most of these
backgrounds are rejected by the PID requirements and the
kinematic fit. The normalized number of surviving back-
ground events is 0.03, which is from wrong PID in the
process eTe” — KT K~z z~. The background from QED
processes is also verified by using experimental data
samples taken away from the J/y and w(3686) mass
regions, including data taken at 3.08 GeV, 3.65 GeV, and
scan data sets covering the energy range from 2.23 to
4.59 GeV. No events are found in the signal window after
taking into account the differences in the integrated
luminosities, the cross sections, the particle momenta,
and the beam energies [25].

The candidate events of J/y — Afe™ are studied by
examining the invariant mass of the pK~z" system,
M ,k-5+, as shown in Fig. 2.

IV. RESULT

Since no events are observed in the signal window, the
upper limit on the number of signal events sq, for J/y —
Al e is estimated to be 5.7 at the 90% CL by utilizing a
frequentist method [26] with unbounded profile likelihood
treatment of systematic uncertainties, where the number of
the signal and background events are assumed to follow a
Poisson distribution, the detection efficiency is assumed
to follow a Gaussian distribution, and the systematic
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FIG.2. Distributions of M -+ for the J/yr — A e” candidate
events for signal MC simulation (shaded histogram) and data
(dots with error bars), where the signal MC sample is normalized
arbitrarily. The inset plot shows a narrow mass range within
(2.23,2.33) GeV/ ¢?, where the arrows represent the signal mass
window.

uncertainty, which will be discussed below, is considered
as the standard deviation of the efficiency. The upper limit
on the branching fraction of J /i — A e~ is determined by

- S90
B(J AS < ,
Ul = Ne) < o S BAY — pKor)

where N7 = (1310.6 £ 7.0) x 10% is the total number of
J /)y decays [27], and B(Af - pK~7")=(6.354+0.33)% is
the decay branching fraction taken from Ref. [12]. Inserting

the numbers of sq, N‘J"/t,/, and B(Af —» pK~z™") into the

above equation, the upper limit on the branching fraction of
J/w — Afe™ is determined to be

B(J/w — Afe™) <69 x 1078,

V. SYSTEMATIC UNCERTAINTY

Systematic uncertainties in the measurement of
B(J/w — Afe”) mainly originate from the total number
of J/y events, the tracking efficiency, the PID efficiency,
the kinematic fit, the MC modeling, and the quoted
branching fraction for A — pK~zn". The uncertainty in
the total number of J/y, determined via inclusive hadronic
events, is 0.5% [27]. The uncertainty due to tracking
efficiency is 1.0% for each track, as determined from a
study of the control samples J/w — pK~A and y(3686) —
xtn~J/y [28]. The uncertainties arising from the
differences of PID efficiencies between data and MC
simulation for electron, pion, kaon, and proton are
determined with the control samples eTe™ — yete™ (at
3.097GeV),J/y - KT K 2%, J)w = atn~ 2’ and J /yr —
xtn pp, respectively. They are 0.3%, 1.0%, 0.5% and
0.6% for electron, pion, kaon and proton, respectively. The
uncertainty of the kinematic fit is estimated using a control
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sample of J/w — n7 7~ pp, where a selection efficiency is
defined by counting the number of events with and without
the kinematic fit requirement. The difference of the
selection efficiencies between data and MC simulation,
0.2%, is assigned as the corresponding systematic uncer-
tainty. The uncertainty due to MC modeling is negligible
[24]. In the calculation of the upper limit, the branching
fraction B(Af — pK zn") = (6.35+0.33)% is quoted
from Ref. [12], yielding a systematic uncertainty of
5.2%. The total systematic uncertainty is 7.0%, obtained
by adding all of the above uncertainties in quadrature.

VI. SUMMARY

In summary, by analyzing 1.3106 x 10° J/y events
collected at /s = 3.097 GeV with the BESIII detector at
the BEPCII collider, the decay of J/y — Afe™ + c.c. has
been investigated for the first time. No signal events have
been observed and thus the upper limit on the branching
fraction is set to be 6.9 x 107% at the 90% CL, which is more
than two orders of magnitude more strict than that of
CLEOQO’s measurement in the analogous process [29]. The
result is one of the best constraints from meson decays
[30,31] and is consistent with the conclusion drawn from the
proton decay experiment [13].
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