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Inclusions and Noninclusions of Spaces of
Multipliers of Some Wiener Amalgam Spaces
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Abstract. The main purpose of this paper is to study inclusions and noninclusions
among the spaces of multipliers of the Wiener amalgam spaces. M.G. Cowling and J. J.F.
Fournier in [5], L. Hörmander in [22] and G. I. Gaudry in [15] , have worked on the space
MG (Lp, Lq) , the space of convolution multipliers from Lp into Lq, and studied inclusions
and noninclusions among these spaces. In this paper, we consider much larger classes of
spaces than Lp and Lq: we consider the Wiener amalgam spaces W (Lp, Lq) and weighted
Wiener amalgam spaces W (Lp, Lq

ω). Firstly, we work on inclusions between the spaces
of multipliers of Wiener amalgam spaces. Later by using the Rudin-Shapiro measures,
we investigate noninclusions among the spaces of multipliers of Wiener amalgam spaces.
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1. Introduction

In this paper we consider the Wiener amalgam spaces W (Lp, Lq) and
W (Lp, Lqω), where ω is the weight function. The idea goes back to N. Wiener
1926. He first defined the amalgam spaces W

(
L1, L2

)
,W

(
L2, L1

)
,W

(
L1, L∞

)
and W

(
L∞, L1

)
[26] . Other special cases were considered in [20] , [21] . In the next

few years, there appeared several independent studies of amalgam spaces. H.G.
Feichtinger gave a generalization of these spaces in [9] . In his definition, he takes
Banach spaces B and C satisfying certain conditions as local and global compo-
nents and defines the Wiener’s amalgam space W (B,C) . He also studied in [10]
and [11] the interpolation and the Fourier transform in amalgam spaces, respec-
tively. Lastly, A.T. Gürkanlı and İsmail Aydın in [2] and [19] and A.T. Gürkanlı
in [18] , defined the variable exponent Wiener amalgam space and worked on some
properties of these spaces.
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In [22] , L. Hörmander established a large number of results for convolution
multipliers from Lp to Lq. Later, many authors worked on multipliers of some
functional spaces. For example, in [7] , [14] and [25] the authors studied the mul-
tipliers of Lebesgue spaces, weighted Lebesgue spaces and measures; in [4] and
[27] , the authors worked on the multipliers of Segal and weighted Segal alge-
bras; in [1] and [8] , the authors investigated the multipliers in Lorentz space and
weighted Lorentz space; in [12] and [16] , the authors dealt with the multipliers
of the Banach ideals. Finally, in [17] , the author considered the multipliers of
modulation spaces.

The main purpose of this paper is to study the inclusions and noninclusions
among the spaces of convolution multipliers of the Wiener amalgam spaces. M.G.
Cowling and J.J.F. Fournier in [5], L. Hörmander in [22] , and G.I. Gaudry in [15] ,
worked on the space MG (Lp, Lq) , the space of convolution multipliers from Lp

into Lq, and discussed inclusions and noninclusions among these spaces. In this
paper, we consider much larger classes of spaces than Lp and Lq: we consider
the Wiener amalgam spaces W (Lp, Lq) and weighted Wiener amalgam spaces
W (Lp, Lqω). Our paper is organized as follows. In Section 2 we introduce the
notations. In Section 3 we treat inclusions between the spaces of multipliers
of Wiener amalgam spaces.We investigate non-inclusions among the spaces of
multipliers in Wiener amalgam spaces in Section 4. In this section, we use Rudin-
Shapiro measures as in [5] .

2. Notation

Let G be a locally compact Abelian group (non-compact and non-discrete)
with Haar measure dx. In this paper Cc (G) denotes the space of continuous,
complex valued functions on G with compact support. The translation and mod-
ulation operators are given by

Txf (t) = f (t− x) , Mξf (t) = e2πξtf (t) , t, x, ξ ∈ G.

For 1 ≤ p ≤ ∞, we write Lp (G) to denote the usual Lebesgue space. We shall
write f̂ for Fourier transform of the function f ∈ Lp. Let ω be a weight function on
G, that is a continuous function satisfying ω (x) ≥ 1 and ω (x+ y) ≤ ω (x)ω (y)
for x, y ∈ G. Let ω1, ω2 be two weight functions. We say that ω1 � ω2 if and
only if there exists C > 0 such that ω1 (x) ≤ Cω2 (x) for all x ∈ G. The weighted
Lp (G) space Lpω (G) is the set

Lpω (G) = {f : fω ∈ Lp (G)} , 1 ≤ p ≤ ∞.

It is known that Lpω (G) is a Banach space under the norm

‖f‖p,ω = ‖fω‖p , 1 ≤ p <∞,
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or

‖f‖∞,ω = ‖fω‖∞ = esssup
x∈Rn

|f (x)ω (x)| , p =∞

[13] . For 1 ≤ p ≤ q ≤ ∞, the space MG (Lp, Lq) of convolution multipliers of
(p, q) type is defined as follows. It is the space of bounded linear transformations
A from Lp to Lq which commute with translation : ATa = TaA for all a ∈ G,
[5] , [22] , [23] , [25] . Let ω be a weight function and let 1 ≤ p, q ≤ ∞. Take any
fixed compact subset Q ⊂ G with non empty interior. Then the Wiener amalgam
space W (Lp, Lqω) consists of all functions (equivalent classes) f : G → C such
that fχK ∈ Lp for each compact K ⊂ G, and the control function

Ff (x) = FQf (x) = ‖f.χQ+x‖p = ‖f.TxχQ‖p , x ∈ G,

lies in Lqω. The norm on W (Lp, Lqω) is

‖f‖W(Lp,Lq
ω) = ‖Ff‖q,ω =

∥∥∥‖f.χQ+x‖p
∥∥∥
q,ω

,

[9] , [10] . Another equivalent but discrete definition of W (Lp, Lq) is given by
using the uniform partition of unity (for short BUPU), that is a sequence of
non-negative functions (ψi)i∈I on G corresponding to a sequence (yi) in G such
that

a.
∑
i∈I

ψi ≡ 1,

b. there exists a compact set U such that sup pψi ⊂ yi + U for all i,

c. for each compact K ⊂ G,

sup
x∈G

\ {i : x ∈ K + yi} = sup \ {j ∈ I : K + yi ∩K + yj 6= φ} <∞,

d. sup
x∈I
‖ψi‖L∞ <∞.

By using such a BUPU we define the Wiener amalgam space W (Lp, Lq) to
be all functions (equivalent classes) f : G → C such that fχK ∈ Lp for each
compact K ⊂ G, and (∑

i

‖fΨi‖qp

) 1
q

<∞.

Throughout Section 3, we will denote W p = W
(
Lp, `1

)
. Let 1 ≤ p1, q1 ≤ ∞

and 1 ≤ p2, q2 ≤ ∞. The space of convolution multipliers from W (Lp1 , Lq1) to
W (Lp2 , Lq2) is denoted by MG (W (Lp1 , Lq1) , W (Lp2 , Lq2)).
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3. Inclusions among the spaces of multipliers

Theorem 1. Let G be a locally compact Abelian group, 1 ≤ p < ∞ and

let p
′

be dual index to p. We denote W p = W
(
Lp, `1

)
. If 1

w ∈ Lp
′
(G) , then

MG (Lpw, L
p
w) ⊂MG (W p,W p) .

Proof. Let f ∈ Lpw (G). Since 1
w ∈ Lp

′
(G) and fw ∈ Lp (G) , then f =

(fw) 1
w ∈ L

1 (G) and hence Lpw (G) ⊆ L1 (G) . By the inclusion Lpw (G) ⊂ L1 (G)
we obtain

Lpw (G) = W (Lp, Lpw) (G) ⊆W
(
Lp, L1

)
(G) = W

(
Lp, `1

)
(G) = W p. (1)

Take any g ∈ Lpw (G) . By the inclusion Lpw (G) ⊆ L1 (G) , there exists C1 > 0
such that

‖g‖1 ≤ C1 ‖g‖p,w . (2)

Then from (1) and (2) ,

‖g‖W (Lp,`1) = ‖g‖W p = ‖Fg‖1 ≤ C1 ‖Fg‖p,w = C1 ‖g‖W(Lp,Lp
w) = C1 ‖g‖p,w .

Since Cc (G) ⊂ Lpw (G) , using (1) we obtain Cc (G) ⊂ W
(
Lp, `1

)
(G) = W p. Let

T ∈ MG (Lpw, L
p
w) and f ∈ Cc (G) . Since translation is isometry on W p, and the

sum is finite, then we have

‖Tf‖W p =

∥∥∥∥∥T (
∑
n

fΨn)

∥∥∥∥∥
W p

=

∥∥∥∥∥∑
n

T (fΨn)

∥∥∥∥∥
W p

(3)

=

∥∥∥∥∥∑
n

T (TxnT−xn (fΨn))

∥∥∥∥∥
W p

=

∥∥∥∥∥∑
n

TxnT (T−xn (fΨn))

∥∥∥∥∥
W p

≤
∑
n

‖TxnT (T−xn (fΨn))‖W p =
∑
n

‖T (T−xn (fΨn))‖W p

≤
∑
n

C1 ‖T (T−xn (fΨn))‖p,w ≤ C1

∑
n

‖T‖Lp
w→Lp

w
‖T−xn (fΨn)‖p,w

= C1 ‖T‖Lp
w→Lp

w

∑
n

‖T−xn (fΨn)‖p,w ,

where (Ψn)i∈I is the uniform partition of unity and ‖T‖Lp
w→Lp

w
is the operator

norm. By the definition of Wiener amalgam space there exists a compact set Q0

such that suppΨn ⊂ xn +Q0. This implies suppT−xn (fΨn) ⊂ Q0. Thus

‖T−xn (fΨn)‖p,w ≤ max
x∈Q0

w (x) ‖T−xn (fΨn)‖p . (4)
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If we use the inequality (4) in (3)

‖Tf‖W p ≤ C1 ‖T‖Lp
w→Lp

w

∑
n

‖T−xn (fΨn)‖p,w

≤ C1 ‖T‖Lp
w→Lp

w
max
x∈Q0

w (x)
∑
n

‖T−xn (fΨn)‖p

= C2

∑
n

‖fΨn‖p = C2 ‖f‖W p ,

where C2 = C1 ‖T‖Lp
w→Lp

w
maxx∈Q0 w (x) . Since Cc (G) is dense in Lp (G) , then

Cc (G) is dense inW p = W
(
Lp, `1

)
by Lemma in 5.5.4 in [6] . ThenMG (Lpw, L

p
w) ⊆

MG (W p,W p) .
Now we show that the inclusion in the statement is proper. Take the Dirac

delta function δx at any x ∈ G and any function f ∈ Lpw (G) . Since Lpw (G) ⊂
L1 (G) , the convolution δx ∗ f is defined and δx ∗ f= Txf . We know by Lemma
2.2 in [13] that the function x → ‖Txf‖p,w is equivalent to the weight function
w, i.e there exists a constant C > 0 such that

C−1w (x) ≤ ‖Txf‖p,w ≤ Cw (x) .

Hence

‖δx|MG (Lpw, L
p
w)‖ = sup

‖f‖p,w ≤1

‖Txf‖p,w
‖f‖p,w

≥ sup
‖f‖p,w ≤1

w (x)

C ‖f‖p,w
→∞,

as x → ∞. Then δx is not uniformly bounded. Thus δx /∈ MG (Lpw, L
p
w) . On the

other hand

‖δx|MG (W p,W p)‖ = sup
‖f‖Wp ≤1

‖δx ∗ f‖W p

‖f‖W p

= sup
‖f‖Wp ≤1

‖Txf‖W p

‖f‖W p

.

From the equality

‖Txf‖W p = ‖FTxf‖1 = ‖TxFf‖1 = ‖Ff‖1 = ‖f‖W p ,

we obtain

‖δx|MG (W p,W p)‖ = sup
‖f‖W ≤1

‖Txf‖W
‖f‖W

= sup
‖f‖W ≤1

‖f‖W
‖f‖W

= 1.

Hence δx is uniformly bounded in MG (W p,W p) and thus δx ∈ MG (W p,W p) .
That means the inclusion MG (Lpw, L

p
w) ⊂MG (W p,W p) is proper. J
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Example 1. Let G = Rn, p′ be dual to p and s > n
p′
. Define the weight function

w (x) =
(

1 + |x|2
)s
. Then 1

w ∈ L
p
′
(Rn) .

Theorem 2. Let G be a locally compact Abelian group, 1 ≤ p < ∞ and p
′

be

dual index to p. Assume that 1
w ∈ L

p
′
(G) . Then

MG (Lpw (G)) ⊆MG (W (Lp, Lrv))

for 1 ≤ r ≤ p, and 0 < θ < 1, where

1

r
= 1− θ

p′
and v = wθ

Proof. For the proof we will use the interpolation Theorem 2.2 and the Corol-
lary 2.3 for Wiener amalgam spaces in [10] . We have for 0 < θ < 1,[

W (Lp, Lpw) ,W
(
Lp, L1

)]
[θ]

= W (Lp, Lrv) , (5)

where

v = vθ1v
1−θ
2 = wθ and

θ

p
+

1− θ
1

=
1

r
.

This implies
1

r
=
θ

p
+

1− θ
1

= 1− θ
(

1− 1

p

)
= 1− θ

p′
.

Let T ∈ MG (Lpw (G)) . Then by Theorem 1, T ∈ MG (W p,W p) . Since T ∈
MG (Lpw (G)) = MG (W (Lp, Lpw)) and T ∈ MG (W p,W p) = MG

(
W
(
Lp, L1

w

)
,

W
(
Lp, L1

w

))
, the functions

T : W (Lp, Lpw)→W (Lp, Lpw)

T : W
(
Lp, L1

w

)
→W

(
Lp, L1

w

)
are bounded. Applying complex interpolation method [3] , [24] and using (5) , we
find that the function

T : W (Lp, Lrv)→W (Lp, Lrv)

is bounded for 0 < θ < 1, where

1

r
= 1− θ

p′
and v = wθ .

Then T ∈MG (W (Lp, Lrv) ,W (Lp, Lrv)) = MG (W (Lp, Lrv)) . J
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Lemma 1. Let
(
B1, ‖.‖B1

)
,
(
B2, ‖.‖B2

)
be two normed spaces and let T be a

bounded linear operator from
(
B1, ‖.‖B1

)
to
(
B2, ‖.‖B2

)
. Assume that a normed

space
(
B3, ‖.‖B3

)
is continuously embedded into B1, and B2 is continuously em-

bedded into a normed space
(
B4, ‖.‖B4

)
. Then T defines a bounded linear operator

from B3 to B4.

Proof. Since T is bounded, there exists C1 > 0 such that

‖Tx‖B2
≤ C1 ‖x‖B1

, (6)

for all x ∈ B1. Also, since B3 ↪→ B1 and B2 ↪→ B4, there exist C2 > 0 and C3 > 0
such that

‖u‖B1
≤ C2 ‖u‖B3

(7)

and

‖v‖B4
≤ C3 ‖v‖B2

(8)

for all u ∈ B3 and v ∈ B4. By using (8) , (6) and (7) , we have

‖Tx‖B4
≤ C3 ‖Tx‖B2

≤ C3C1 ‖x‖B1
≤ C1C2C3 ‖x‖B3

for all x ∈ B3. Then T is bounded. J

Proposition 1. Let w1, w2, v1, v2 be weight functions, 1 ≤ p1, q1, r1, s1 ≤ ∞ and
let 1 ≤ p2, q2, r2, s2 ≤ ∞. Assume that p2 ≥ p1, q1 ≥ q2, r1 ≥ r2, s1 ≤ s2. If
w1 ≥ v1 and w2 ≤ v2, then

MG

(
W
(
Lp1 , Lq1w1

)
,W

(
Lr1 , Ls1w2

))
⊂MG

(
W
(
Lp2 , Lq2v1

)
,W

(
Lr2 , Ls2v2

))
.

Proof. By the assumption

W
(
Lp2 , Lq2v1

)
↪→W

(
Lp1 , Lq1w1

)
and

W
(
Lr1 , Ls1w2

)
↪→W

(
Lr2 , Ls2v2

)
.

Then by Lemma 1, the proof is completed. J

Lemma 2. If 1 ≤ p, q <∞ and f ∈W (Lp, Lq) , then

lim
h→∞

‖f + Thf‖W (Lp,Lq) = 2
1
q ‖f‖W (Lp,Lq) .
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Proof. Suppose g ∈ Cc (G) with compact support K. Since the definition of
W (Lp, Lq) is independent of choice of the compact set Q, we can choose Q ⊂ K.
If h /∈ K −K, then

sup pχQ+x ∩ sup pχQ+x−h = φ,

thus
sup pgχQ+x ∩ sup pgχQ+x−h = φ,

for all x ∈ G. Then we have

‖(g + Thg)χQ+x‖p = ‖gχQ+x + (Thg)χQ+x‖p

= ‖gχQ+x‖p + ‖gχQ+x−h‖p = Fg (x) + ThFg (x) . (9)

Since Fg and ThFg belong to Lq (G) , by Lemma 3.5.1 in [23] we have

lim
h→∞

‖Fg + ThFg‖q = 2
1
q ‖Fg‖q = 2

1
q ‖f‖W (Lp,Lq) . (10)

Thus by (9) and (10) ,we obtain

‖g + Thg‖W (Lp,Lq) =
∥∥∥‖(g + Thg)χQ+x‖p

∥∥∥
q

= 2
1
q ‖f‖W (Lp,Lq) . (11)

It is known that Cc (G) is dense in W (Lp, Lq) , [6] . Then for any f ∈W (Lp, Lq) ,
and any ε > 0, there exists g ∈ Cc (G) such that

‖f − g‖W (Lp,Lq) <
ε

2
(

2 + 2
1
q

) . (13)

Take any h /∈ K −K such that∣∣∣‖Thg − g‖W (Lp,Lq) − 2
1
q ‖g‖W (Lp,Lq)

∣∣∣ ≤ ε

2
.

Then it is easily shown that for all h /∈ K −K∣∣∣‖f − Thf‖W (Lp,Lq) − 2
1
q ‖f‖W (Lp,Lq)

∣∣∣ = (14)

=| ‖f − g + g − Thg + Thg − Thf‖W (Lp,Lq) +

+2
1
q ‖g‖W (Lp,Lq) − 2

1
q ‖g‖W (Lp,Lq) − 2

1
q ‖f‖W (Lp,Lq) |

≤| ‖f − g‖W (Lp,Lq) + ‖Thf − Thg‖W (Lp,Lq) + ‖Thg − g‖W (Lp,Lq) +

+2
1
q ‖g‖W (Lp,Lq) − 2

1
q ‖g‖W (Lp,Lq) − 2

1
q ‖f‖W (Lp,Lq) | .
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Since the Wiener amalgam space is strongly translation invariant (i.e. ‖Thg‖W (Lp,Lq)

= ‖g‖W (Lp,Lq)), from (13) and (14) we have∣∣∣‖f − Thf‖W (Lp,Lq) − 2
1
q ‖f‖W (Lp,Lq)

∣∣∣
≤ 2 ‖f − g‖W (Lp,Lq) +

∣∣∣‖Thg − g‖W (Lp,Lq) − 2
1
q ‖g‖W (Lp,Lq)

∣∣∣+

+
∣∣∣2 1

q ‖g‖W (Lp,Lq) − 2
1
q ‖f‖W (Lp,Lq)

∣∣∣ ≤ 2 ‖f − g‖W (Lp,Lq)

+ 2
1
q ‖f − g‖W (Lp,Lq) +

∣∣∣‖Thg − g‖W (Lp,Lq) − 2
1
q ‖g‖W (Lp,Lq)

∣∣∣
=

(
2 + 2

1
q

)
‖f − g‖W (Lp,Lq) +

∣∣∣‖Thg − g‖W (Lp,Lq) − 2
1
q ‖g‖W (Lp,Lq)

∣∣∣
≤ ε

2
(

2 + 2
1
q

) (2 + 2
1
q

)
+
ε

2
=
ε

2
+
ε

2
= ε.

J

Proposition 2. If A ∈MG (W (Lp, Lq) ,W (Lr, Ls)) and q > s, then A = 0.

Proof. Since A is bounded, there exists a smallest constant C > 0 such that

‖Af‖
W (Lr,Ls)

≤ C ‖f‖W (Lp,Lq) (15)

for all f ∈W (Lp, Lq) . Then from (15) ,

‖Af + Th (Af)‖
W (Lr,Ls)

= ‖Af +A (Thf)‖
W (Lr,Ls)

= ‖A (f + Thf)‖
W (Lr,Ls)

≤ C ‖f + Thf‖W (Lp,Lq) . (16)

By Lemma 2, we have

lim
h→∞

‖Af + Th (Af)‖
W (Lr,Ls)

= 2
1
s ‖Af‖

W (Lr,Ls)
, (17)

and
lim
h→∞

‖f + Thf‖W (Lp,Lq) = 2
1
q ‖f‖W (Lp,Lq) . (18)

Then from (16) , (17) , and (18) , we have

2
1
s ‖Af‖

W (Lr,Ls)
≤ C2

1
q ‖f‖W (Lp,Lq) ,

and hence
‖Af‖

W (Lr,Ls)
≤ 2

1
q
− 1

sC ‖f‖W (Lp,Lq) . (19)

Since q > s, we have 1
q −

1
s < 0, and so 2

1
q
− 1

sC < C. But this contradicts the
assumption that C is a smallest constant satisfying (19) . J
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Proposition 3. If 1
w ∈ L

s
′

and A ∈MG (W (Lp, Lq) ,W (Lr, Lsw)) , then A = 0.

Proof. The assumption 1
w ∈ L

s
′

implies that Lsw ⊂ L1, and thusW (Lr, Lsw) ↪→
W
(
Lr, L1

)
. Then the inclusion

MG (W (Lp, Lq) ,W (Lr, Lsw)) ⊂MG

(
W (Lp, Lq) ,W

(
Lr, L1

))
(20)

is obtained by Lemma 1. Hence by the inclusion (20) , we haveA ∈MG (W (Lp, Lq) ,
W
(
Lr, L1

))
. Since q > 1, by Proposition 2, we obtain A = 0. J

4. Noninclusions among the spaces of multipliers

In this section we will discuss the noninclusions among the spaces of multi-
pliers.

We need the following Lemma (see Lemma 17 in [5]).

Lemma 3. (M.G. Cowling and J.J.F. Fournier). Suppose G is a nondiscrete lo-
cally compact group. There exists a sequence of relatively compact neighbourhoods
(Un) of the identity in G such that

m (Un + Un) ≤ Cm (Un) , n = 1, 2, ...; m (Un)→ 0 as n→∞,

where C is a constant independent of n, and m (Un) is the Haar measure of the
set Un.

Theorem 3. Let G be a nondiscrete locally compact Abelian group. Suppose
1 ≤ p, q, r, s, p1, q1, r1, s1 ≤ ∞, 1 ≤ r1 ≤ q ≤ s1 ≤ ∞, and 1 ≤ r1 ≤ r ≤ s1 ≤ ∞.
If

0 ≤ 1

p
− 1

q
<

1

r
− 1

s
,

then MG (Lp,W (Lr1 , Ls1)) is not contained in MG (W (Lr1 , Ls1) , Ls) .

Proof. Since G is a nondiscrete locally compact Abelian group, by Lemma
3, there exists a sequence of relatively compact neighbourhoods (Un)n∈N of the
identity in G such that

µ (Un + Un) ≤ Cµ (Un) , n ∈ N; µ (Un)→ 0, as n→∞,

where C is a constant independent of n. We estimate the MG (Lp,W (Lr1 , Ls1))
and MG (Lp, Lq) norms of characteristic function χUn of the set Un, where Un is
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the term of the sequence (Un)∈N . Since r1 ≤ q ≤ s1, we have Lq ⊂ W (Lr1 , Ls1)
and there exists C1 > 0 such that

‖g‖W (Lr1 ,Ls1 ) ≤ C1 ‖g‖q

for all g ∈ Lq. Then

‖χUn |MG (Lp,W (Lr1 , Ls1))‖ = sup
f∈Lp

‖χUn (f)‖W (Lr1 ,Ls1 )

‖f‖p
(21)

≤ sup
f∈Lp

C1 ‖χUn (f)‖q
‖f‖p

= C1 ‖χUn |MG (Lp, Lq)‖ .

Note that

‖χUn |MG (Lp, Lq)‖ ≤ µ (Un)
1− 1

p
+ 1

q . (22)

Indeed, if we take a number t such that

1− 1

t
=

1

p
− 1

q
,

then Lt is embedded continuously in MG (Lp, Lq) and

‖χUn ∗ f‖q ≤ ‖χUn‖t ‖f‖p

for all f ∈ Lp. Then

‖χUn |MG (Lp, Lq)‖ ≤ ‖χUn‖t = µ (Un)
1− 1

p
+ 1

q .

Combining (21) and (22) , we obtain

‖χUn |MG (Lp,W (Lr1 , Ls1))‖ ≤ C1 ‖χUn |MG (Lp, Lq)‖ ≤ C1µ (Un)
1− 1

p
+ 1

q . (23)

On the other hand, from the inequality r1 ≤ r ≤ s1 we have Lr ⊂ W (Lr1 , Ls1)
and there exists C2 > 0 such that

‖g‖W (Lr1 ,Ls1 ) ≤ C2 ‖g‖r (24)

for all g ∈ Lr. Then by (23) ,

‖χUn |MG (W (Lr1 , Ls1) , Ls)‖ = sup
f∈W (Lr1 ,Ls1 )

f 6=0

‖χUn (f)‖s
‖f‖W (Lr1 ,Ls1 )

≥



Inclusions and Noninclusions of Spaces of Multipliers of Some Wiener Amalgam Spaces 87

≥ sup
f∈Lr

f 6=0

‖χUn (f)‖s
C2 ‖f‖r

=
1

C2
‖χUn |MG (Lr, Ls)‖ . (25)

Again as in (22) , let t be the number such that

1− 1

t
=

1

p
− 1

q
.

It is easy to show that

µ (Un)χ−Un ≤ χUn ∗ χ−Un−Un .

Then

µ (Un) ‖χ−Un‖s ≤ ‖χUn ∗ χ−Un−Un‖s
≤ ‖χUn |MG (Lr, Ls)‖ ‖χ−Un−Un‖r ,

this implies

µ (Un) (µ (Un))
1
s ≤ ‖χUn |MG (Lr, Ls)‖ (µ (−Un − Un))

1
r . (26)

By Lemma 3, µ (−Un − Un) ≤ Cµ (Un) for some constant C > 0. Thus from (22)

µ (Un) (µ (Un))
1
s ≤ ‖χUn |MG (Lr, Ls)‖ (Cµ (Un))

1
r ,

and so we have

‖χUn |MG (Lr, Ls)‖ ≥ C−
1
rµ (Un)1−

1
r
+ 1

s . (27)

Combining (25) and (27), we have

‖χUn |MG (W (Lr1 , Ls1) , Ls)‖ ≥ 1

C2
‖χUn |MG (Lr, Ls)‖ ≥ 1

C2C
1
r

µ (Un)1−
1
r
+ 1

s .

(28)
Finally, by using the estimates (23) and (28) , we obtain

‖χUn |MG (W (Lr1 , Ls1) , Ls)‖
‖χUn |MG (Lp,W (Lr1 , Ls1))‖

≥
1

C2C
1
r
µ (Un)1−

1
r
+ 1

s

C1µ (Un)
1− 1

p
+ 1

q

=
1

C1C2C
1
rµ (Un)

[
( 1
r
− 1

s )−
(

1
p
− 1

q

)] . (29)
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Since 0 ≤ 1
p −

1
q <

1
r −

1
s , the right- hand side of (29) tends to∞ as n→∞. That

means we haven’t any constant C0 > 0 such that

‖χUn |MG (W (Lr1 , Ls1) , Ls)‖
‖χUn |MG (Lp,W (Lr1 , Ls1))‖

≤ C0.

for all (Un)∈N . This implies that MG (Lp,W (Lr1 , Ls1)) is not contained in
MG (W (Lr1 , Ls1) , Ls) . J

Corollary 1. Let G be a nondiscrete locally compact Abelian group and let 1 ≤ p,
q, r, s, p1, q1, r1, s1 ≤ ∞. If r1 5, r ≤ s1, s2 ≤ s ≤ r2 and

0 ≤ 1

p
− 1

q
<

1

r
− 1

s
,

then MG (Lp,W (Lr1 , Ls1)) is not contained in MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) .
Proof. Assume that

MG (Lp,W (Lr1 , Ls1)) ⊂MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) . (30)

Since s2 ≤ s ≤ r2, we have W (Lr2 , Ls2) ⊂ Ls . Thus there exists C1 > 0 such
that

‖f‖s ≤ C1 ‖f‖W (Lr2 ,Ls2 )

for all f ∈W (Lr2 , Ls2) . Let A ∈MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) . Then by (30) ,

‖Af‖s ≤ C1 ‖Af‖W (Lr2 ,Ls2 ) ≤ C1C2 ‖f‖W (Lr1 ,Ls1 )

for some C2 > 0. This implies A ∈MG (W (Lr1 , Ls1) , Ls) . Hence

MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) ⊂MG (W (Lr1 , Ls1) , Ls) . (31)

Combining (30) and (31) , we have

MG (Lp,W (Lr1 , Ls1)) ⊂ MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2))

⊂ MG (W (Lr1 , Ls1) , Ls) .

But this inclusion is a conradiction with the Theorem 3. Thus the inclusion (26)
is not true. J

Theorem 4. ( M.G. Cowling and J.J.F. Fournier, [5] , Theorem 7 ). Let G be a
noncompact, unimodular, locally compact group. Let 1 ≤ p, q, r, s ≤ ∞. Suppose

that p ≤ q and min
(
s, r

′
)
< min

(
q, p

′
)
. Then MG (Lp, Lq) is not included in

MG (Lr, Ls) .
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Theorem 5. Let s1 ≤ p ≤ r1, r2 ≤ q ≤ s2 and let r3 ≤ r ≤ s3, s4 ≤ s ≤ r4. Sup-

pose that p ≤ q and min
(
s, r

′
)
< min

(
q, p

′
)
. Then MG (W (Lr1 , Ls1) ,W (Lr2 ,

Ls2)) is not included in MG (W (Lr3 , Ls3) ,W (Lr4 , Ls4)) .

Proof. By Theorem 4, MG (Lp, Lq) is not included in MG (Lr, Ls) . Then there
exists at least one element T ∈ MG (Lp, Lq) such that T /∈ W (Lr, Ls) . By the
assumptions W (Lr1 , Ls1) ↪→ Lp, Lq ↪→W (Lr2 , Ls2) and also Lr ↪→W (Lr3 , Ls3)
and W (Lr4 , Ls4) ↪→ Ls. Then by Lemma 1, we have the inclusions

MG (Lp, Lq) ⊂MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) ,

MG

(
W (Lr3 , Ls3) ,W

(
Lr4 , Ls4

))
⊂MG (Lr, Ls) .

Since T ∈ MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) but T /∈ MG (W (Lr3 , Ls3) ,W (Lr4 ,
Ls4)) , the space MG (W (Lr1 , Ls1) ,W (Lr2 , Ls2)) is not included in MG (W (Lr3 ,
Ls3) ,W (Lr4 , Ls4)) . J
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