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Using a data sample with an integrated luminosity of 2.93 fb~! taken at the center-of-mass energy of
3.773 GeV, we search for the Majorana neutrino (v,,) in the lepton number violating decays D — Krete™. No
significant signal is observed, and the upper limits on the branching fraction at the 90% confidence level are set to
be B(D® -» K n"ete™) <2.8x 1075, B(DT — K4n~eTe’) <33 x107° and B(D* - K= 2lete™) <
8.5 x 107%. The Majorana neutrino is searched for with different mass assumptions ranging from 0.25 to
1.0 GeV/c? inthe decays D° — K~=e"v,,,v,, > n-e" and D* - K%e*tv,,,v,, — n~e",and the upper limits
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on the branching fraction at the 90% confidence level are at the level of 1077 ~

107%, depending on the mass of

the Majorana neutrino. The constraints on the mixing matrix element |V, |? are also evaluated.
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I. INTRODUCTION

In the Standard Model (SM), due to the absence of a
right-handed neutrino component and the requirements of
SU(2),, gauge invariance and renormalizability, neutrinos
are postulated to be massless. However, the observations of
neutrino oscillation [1-4] have shown that neutrinos have a
tiny mass, which provides the first evidence for physics
beyond the SM. Theoretically, the leading model to
accommodate the neutrino masses is the so-called “seesaw”
mechanism, which can be realized in several different
schemes [5-8]. In the canonical case, the mass (m,) of
an observed light neutrino is given by m, ~yv*/m, |
where y, is a Yukawa coupling of a light neutrino to the
Higgs field, v is the Higgs vacuum expectation value in the
SM, and m, is the mass of a new massive neutrino state
V,,. The smallness of m, can be attributed to the existence
of the new neutrino state v,, with high mass.

The nature of neutrinos, whether neutrinos are Dirac or
Majorana particles, is still an open question. If they are
Majorana, their particles and antiparticles are identical,
while they are not identical if they are Dirac particles.
The effects of Majorana neutrino can be manifested
through the processes violating lepton-number (L) con-
servation by two units (AL = 2). Consequently, experi-
mental searches for Majorana neutrinos occurring through
lepton-number violating (LNV) AL = 2 processes are of
great interest. Different AL = 2 processes at low and high
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(a) D° - K—7~ 171+ (CF)

(b) Dt - KOz~ 1+1+ (CF)

S

(d) D+ — K- #01*1+ (DCS)

(c) D° = K—#~1*1+ (DCS)

FIG. 1. Feynman diagrams for LNV processes D — Kzl™[" involving the Majorana neutrino (y,(,f)), where [ means the lepton.

energies have been proposed in the literatures [9-13].
Among them, an interesting source of LNV processes is
given by exchanging a single Majorana neutrino with a
mass on the order of the heavy flavor mass scale, where the
Majorana neutrino can be kinematically accessible and
produced on shell. The effects of such a heavy neutrino
with mass in the range 100 MeV/c? to a few GeV/c? have
been widely searched for in AL = 2 three-body and four-
body decays of heavy flavor mesons and in 7 lepton decays
by different experiments, as summarized in Ref. [14], but
no evidence has been observed so far. The AL =2
processes of D mesons have been reported by the E791
collaboration [15] with upper limits (ULs) on the decay
branching fraction (BF) ranging 107> ~ 1074,

In this paper, we present the studies of LNV processes
with AL = 2 in D meson decays D* — K~ z"ete™, D" —
K9n~etet and DY — K~n%¢*e™. These processes can
occur through Cabibbo-favored (CF) and doubly Cabibbo-
suppressed (DCS) decays by mediation of a Majorana
neutrino, v, [11], as depicted in Fig. 1. The DCS processes
[Figs. 1(c) and 1(d)] are expected to be suppressed by a
factor |V .4V s/ VesVual ~ 0.05 [16] with respect to the CF
processes [Figs. 1(a) and 1(b)]. In this analysis, we search
for the above three processes as well as the Majorana
neutrino with different m, hypotheses in the CF processes.
Additionally, the constraints on the mixing matrix element
|V, |* are also estimated depending on m,, . The analysis
is carried out based on the data sample with an integrated
luminosity of 2.93 fb=! at the center-of-mass (C.M.)
energy (y/s) of 3.773 GeV collected with the BESIII
detector. Throughout the paper, the charged conjugated
modes are always implied implicitly.

II. DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector is a magnetic spectrometer [17]
located at the Beijing Electron Positron Collider (BEPCII)
[18]. The cylindrical core of the BESIII detector consists of
a helium-based multilayer drift chamber (MDC), a plastic

scintillator time-of-flight system (TOF), and a CsI(TIl)
electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0 T
magnetic field. The solenoid is supported by an octagonal
flux-return yoke with resistive plate counter muon identifier
modules interleaved with steel. The acceptance of charged
particles and photons is 93% over 4z solid angle. The
charged-particle momentum resolution at 1 GeV/c is
0.5%, and the dE/dx resolution is 6% for the electrons
from Bhabha scattering. The EMC measures photon
energies with a resolution of 2.5% (5%) at 1 GeV in the
barrel (end cap) region. The time resolution of the TOF is
68 ps (110 ps) in barrel (end cap).

Simulated samples produced with the GEANT4-based [19]
Monte Carlo (MC) program which includes the geometric
description of the BESIII detector and the detector
response, are used to determine the detection efficiency
and to estimate the backgrounds. The simulation includes
the beam energy spread and initial state radiation (ISR)
in the eTe™ annihilations modeled with the generator
KKMC [20].

The cocktail MC sample consists of the production of
DD pairs with consideration of quantum coherence for all
neutral D decay modes, the non-DD decays of the
w(3770), the ISR production of the J/y and w(3686)
states, and the continuum processes incorporated in KKMC
[20]. The known decay modes are modeled with EVTGEN
[21] using BFs taken from the Particle Data Group [16],
and the remaining unknown decays from the charmonium
states with LUNDCHARM [22]. Final state radiation (FSR)
from charged final state particles are incorporated with the
PHOTOS package [23]. The cocktail MC sample is generated
to study the possible background sources, and is normal-
ized to the luminosity of the data sample in the analysis.

To study the detector efficiencies of the LNV AL =2
processes, the signal D meson is assumed to decay
uniformly in phase space, while in searching for the
Majorana neutrino, the exclusive MC samples D —
K=e*v,, and DT — K%e'v,, with v,, » n7e" are gener-
ated with different m, assumptions, and the angular
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distributions are simulated according to the squared ampli-
tude in Eq. (8) of Ref. [11]. The form factor is described
with the modified pole approximation.

III. EVENT SELECTION

Charged tracks in a candidate event are reconstructed
from hits in the MDC. The charged tracks other than those
from K9 decay are required to pass within 10 cm of the
interaction point (IP) in the beam direction and within 1 cm
in the plane perpendicular to the beam, as well as satisfy
|cos @] < 0.93, where @ is the polar angle relative to the
beam direction. The TOF and dE/dx information are com-
bined to determine particle identification (PID) probabil-
ities (prob) for the # and K hypotheses, and a 7= (K) is
identified by requiring prob(z) > prob(K) [prob(K) >
prob(z)]. To identify an electron or positron, the EMC
information is also used to determine the PID probability.
An electron or positron is required to satisfy prob(e)/
(prob(e) + prob(z) + prob(K)) > 0.8, and E/p > 0.8,
where E and p are the deposited energy in the EMC
and the track momentum measured in the MDC,
respectively.

The Kg candidates are reconstructed with a vertex-
constrained fit for pairs of oppositely charged tracks,
assumed to be pions, which are required to pass within
20 cm of the IP along the beam direction, but with no
constraint in the transverse plane. A vertex fit is carried out
to insure that the two selected tracks originate from a
common vertex, and the fit y? is required to be less than
100. The resulting decay vertex is required to be separated
from the IP by greater than twice the resolution. The K
candidates are further required to have an invariant mass
within [0.487,0.511] GeV/c?.

Electromagnetic showers are reconstructed from clus-
ters of energy deposited in the EMC, and the energy
deposited in nearby TOF counters is included to improve
the reconstruction efficiency and energy resolution.
Photon candidate showers must have a minimum energy
of 25 MeV in the barrel region (| cos 6| < 0.80) or 50 MeV
in the end-cap region (0.86 <|cos 8| < 0.92). To suppress
showers originating from charged particles, a photon must
be separated by at least 10° from any charged track. To
suppress electronic noise and energy deposits unrelated to
the event, timing information from the EMC for the
photon candidates must be in coincidence with collision
events i.e., 0 < ¢ <700 ns. The z° candidates are recon-
structed from pairs of photons. Due to the worse reso-
lution in the EMC end caps, #° candidates reconstructed
with two photons in the end caps of the EMC are rejected.
The invariant mass of two photons is required to be within
[0.115,0.150] GeV/c? for z° candidates. In the following
analysis, the photon pair is kinematically constrained to
the nominal mass of the z° to improve the resolution of 7°
momentum.

TABLE I. AE requirements for D — Krze™e™ processes.

Channel AE (MeV)
DY - K-n-etet [-33.0,19.7]
Dt - Kdnetet [-30.6, 19.3]
Dt — K n%%et [-54.8,24.4]

In order to improve the positron momentum resolution
for the effects of FSR and bremsstrahlung, we use an FSR
recovery process, where any photon, which has energy
greater than 30 MeV, is separated by more than 20° from
any shower in the EMC originating from a charged track,
and is within a cone of 5° around the positron direction, has
its momentum added to that of the positron.

In the analysis, the signal candidates of D meson LNV
decay are searched for using a single tag (ST) method. Two
variables, the beam energy constrained mass Mpc and the
energy difference AE,

Mpc = Elz)eam - ‘ﬁD|2, AE = Ep = Epeam: (1)

are used to identify the signal candidates, where pj, and E,
are the momentum and energy of the D candidates in the
ete™ C.M. system, and Ey,, is the beam energy. The D
meson decays form a peak at the nominal D mass in the
My distribution and at zero in the AE spectra. If multiple
candidates are present per charm per event, the one with the
smallest |AE| is chosen. Candidate events with Mpc greater
than 1.84 GeV/c? and AE within approximately [-3.5,
2.5] standard deviations of the peak are accepted. The
numerical values of the mode dependent AE requirement
are listed in Table I.

Potential background sources are examined with the
cocktail MC sample. The dominant contributions are from
the processes y(3770) — DD with D — Kev, due to large
BFs and the processes e™e™ — ¢g, but no peaking back-
ground is observed in the My distribution.

IV. SIGNAL DETERMINATION

The signal yields are determined by performing an
unbinned maximum likelihood fit on the My distribution
of surviving candidate events. In the fit, the background
shape is described by an ARGUS function [24], and the
signal shape is modeled by the MC simulated shape
convolved with a Gaussian function which accounts for
the resolution difference between data and MC simulation.
The width of the Gaussian function is fixed to be
0.32 MeV/c?, obtained from a control sample of D —
K- ztn"x~ decay. The fits are shown in Fig. 2. The BFs,
Bp_kretet, are calculated by

A ?)

Bpokreter = 57—
me e Nt R
2-Nj5-€ B
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FIG. 2. Fitting on the My spectra for the decays (a) D° —
K-netet, (b) D" > Kn~ete™ and (¢) DT — K-l tet.
The dotted points with error bars are from data, the blue lines are
the fitting result, the dashed red and long dashed green lines are
the signal and background components, respectively.

where Ny, is the signal yield determined from the fit, N
is the total number of DD pairs, which are (8,296 + 31 +
65) x 10° for D* D~ pairs and (10,597 + 28 + 98) x 10°
for D°D° pairs [25], € is the detection efficiency, obtained
from the corresponding MC simulation, and B is the decay

branching fraction of the intermediate state, i.e., 1 in the

TABLE II.

decay D° — K~ 77ete™ due to no intermediate state

involved, Byo_,,+,- in the decay D" — K%z~e*e™ and
N

By, in the decay D* — K~z%¢"e*, where By

and Bﬂo_,yy are taken from the world average values [16].

A factor of 2 in the denominator indicates both D and D
mesons in every event are included.

Since no obvious signal is observed, the ULs at the
90% confidence level (CL) on the BFs of D — Kre'e™
decays are set after considering the effect of systematic
uncertainties.

—rtn

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties arise from several aspects
including the tracking and PID efficiencies of charged
tracks, Kg and z° reconstruction efficiencies, total number
of DD pairs, BFs of K% — 7z~ and z° — yy decays, AE
requirement, FSR recovery, modeling for detection effi-
ciency and fitting Mpc.

Systematic uncertainties from the tracking efficiency of
K, 7 and e are assigned to be 1.0% per track [26,27]. For
the PID efficiency, the systematic uncertainties for K(r)
and e are 0.5% and 1.0% per track [26,27], respectively.
Systematic uncertainties from K g and 7° reconstruction are
taken to be 1.5% and 2% [28], respectively.

The systematic uncertainty of the total number of DD
pairs is 0.9% [25]. The BFs of K} — z "z~ and z° — yy are
(69.20 £ 0.05)% and (98.823 £ 0.034)% from the world
average values [16], resulting in the systematic uncertainty
of 0.1% and 0.0%, respectively.

The systematic uncertainty from the AE requirement is
studied using control samples of D° — K~z"z° and
D" — Ktz z~ for the signal processes with and without
7% in final states, where the control samples are selected
with the ST method. We set [y —3.56, 4+ 2.50] as a
nominal AE window for the signal, where ¢ and o are the

Relative systematic uncertainties for the D — Kre™e™ processes (in percent). Here “...” denotes that

the corresponding systematic uncertainty don’t exist or can be negligible.

Relative systematic uncertainty (%)

Source D’ - K~z ete™ Dt — K%netet Dt - K nl¢Te”
Tracking 4.0 3.0 3.0
PID 3.0 2.5 2.5
K selection 1.5
7° selection 2.0
Npp 1.0 0.9 0.9
Cited BF 0.1 0.0
AE requirement 0.7 0.7 0.4
FSR recovery 0.6 0.8 0.6
Efficiency modeling 3.6 4.3 4.7
Fitting MBC c B ca
Total 6.3 6.2 6.5
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mean and width values of AE obtained by fitting. Then we
vary the AE window by 0.5¢ on both sides, and the
resulting differences of the change of efficiency between
data and MC simulation are taken as the systematic
uncertainties.

To study the systematic uncertainty associated with FSR
recovery process, we obtain the alternative detection effi-
ciency without the FSR recovery process, and the differ-
ence in the efficiency is taken as the systematic uncertainty.

The difference of the geometric efficiency between the
one obtained with the phase space generator, and the
average of m, -dependent cases, is taken as the systematic
uncertainty associated with the modeling.

The systematic uncertainty associated with the fitting of
the My distribution arises from the fitting range, signal
shape and background shape. We performed alternative
fits by varying the fitting range from [1.84, 1.89] to
[1.845,1.89] GeV/c?, the width of convolved Gaussian
for signal shape within one standard deviation, and the
background shape from the ARGUS function to the cock-
tail MC simulated shape. The relative changes of the signal
yields are taken as the corresponding systematic uncer-
tainties, and are found to be negligible compared to the
statistical uncertainties.

All the systematic uncertainties are summarized in
Table II. Assuming they are independent, the total system-
atic uncertainty is the quadrature sum of the individ-
ual ones.

VI. RESULTS AND DISCUSSION
A. Upper limits for D - Kze*e* decays

Taking into account the effect of systematic uncertain-
ties, we calculate ULs on the BFs for the LNV AL =2
decays D’ > K=n~ete", D" — Kn~etet and DT —
K~ n%e*e* according to Eq. (2) based on the Bayesian
method [29]. A series of fits of the My distribution are
carried out fixing the BF at different values, and the
resultant curve of likelihood values as a function of the
BF is convolved with a Gaussian function, which has a
width given by the overall systematic uncertainty and is
normalized to the maximum value of 1. The ULs on the BF
at the 90% CL, Bg; for the different processes, which are
listed in Table III, are the values that yield 90% of the
likelihood integral over BF from zero to infinity.

TABLE III. The detection efficiencies (¢), the ULs at the

90% CL on the signal yields (Ngé‘), and the BFs (Bglg“) of

D — Krete™ processes.

Channel €(%) Ngy B (x107%)
DY —» Kz etet 16.8 10.0 <28
Dt — Kdn~etet 11.5 4.4 <33
DT - K al¢tet 10.6 14.8 <8.5

B. Searching for Majorana neutrino

With the above three decay processes, the Majorana
neutrino can be searched for by studying the decay chains
D’ - K~eTv,(n7e"), D* > K%e'v, (77et) or DT —
ne*v, (K-et); a narrow peak will be present in the
distribution of z7e" (K~e™) invariant mass if a signal
exists. Compared to the other two decay channels, the
DT = n%"*y,,(K~e") is expected to be suppressed by a
factor of 1/20 because of the smaller CKM factors. So in
this analysis, the Majorana neutrino is searched in the
processes D° — K~ e*v,, (n7et) and D™ — K%e v, (n7e™)
with different m, hypotheses, ie., from 025 to
1.0 GeV/c? with an interval of 0.05 GeV/c?.

Based on the above selection criteria, to search for the
Majorana neutrino with a given mass, m, , the candidate
events are selected by further requiring the invariant mass of
any 7~ e’ combination (two et per event), M,-,+, to be
within the range of [m, — 30, m, + 3c], where o is the
resolution of the M -+ distribution obtained by studying the
signal MC sample. The number counting method is used to
determine the signal yields due to very few events surviving.
We count the number of signal candidates within the My
signal region of [1.859, 1.872] ([1.865, 1.875]) GeV/c? for
the decay D° — K=e"v,,(z7e™) [D" — KleTv,,(n7e™)].
The number of background events is estimated from the
side-band regions of the My distribution, defined as [1.842,
1.852] and [1.876, 1.886] ([1.842, 1.854] and [1.878, 1.886])
GeV/c?, taking into account the scale factor obtained by
fitting the My distribution as shown in Fig. 2. The ULs on
the BFs of Majorana neutrino case are calculated with the
profile likelihood method incorporating the systematic
uncertainty with TROLKE [30] in the ROOT framework, where
the numbers of events in the signal and side-band regions are
assumed to be described by Poisson distributions and the
efficiency by a Gaussian distribution. The ULs on the BFs at
the 90% CL as a function of m, are at the level of
1077 ~ 107°, as shown in Fig. 3.

Based on the measured BFs, the mixing matrix element
|V, |* of a positron with the heavy Majorana neutrino in
the charged current interaction [9,14] as a function of m,
can be obtained by Eq. (3) [11],

4

7 (3)

F(mym ’ Veum (ml/m )) _ ‘ Veum (ml/m)
F(ml/m ’ V/eum (ml/,,, >) ‘ Vlelfm <ml/m)

where the decay width I'(m,, ,V,, (m, )) is proportional
to its BF, and I'(m,, , V¢, (m, ))is related to the BF given
in Tables 4 and 5 of Ref. [11], based on the assumptions
that the Majorana neutrino is on-shell and its width is
negligible compared to the neutrino mass. The mixing
matrix element |V}, (m, )|* is derived from a reanalysis of
neutrinoless double beta decay experimental data [31]. The

resultant ULs on the mixing matrix element |V,, > as a
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FIG. 3. The ULs on the (a)(b) BF and the (c)(d) mixing matrix
element |V, | at the 90% CL as a function of m,, for the decays
(@)(c) D° - K=etv,,(z7et) and (b)(d) DT - Kbe'tv,,(z ™).

function of m, , which are also depicted in Fig. 3, provide
complementary information in D meson decays.

VII. SUMMARY

Using the data sample with the integrated luminosity of
2.93 tb~! collected at the C.M. energy /s = 3.773 GeV,
we perform a search for LNV AL =2 decays of D —
Krete™ as well as search for a Majorana neutrino with
different mass hypotheses. No evidence of a signal is
found. Therefore, using the Bayesian approach, we place

90% CL ULs on the decay BFs for D° — K=z~ e*e™,
D* — K%z~etet and D* — K-n%eTet to be 2.8 x 107,
3.3 x 107® and 8.5 x 107°, respectively. We also determine
ULs, which are of the level 10~7 ~ 107°, on the BFs at the
90% CL for the decays D° — K~e*v,,(z7e*) and D* —
KleT v, (n"e") with different m, hypotheses within the
range 0.25 to 1.0 GeV/c?. The constraints on the mixing
element |V, |> depending on m,, are also evaluated based
on the related variables from Ref. [11] and the measured
BFs. The results provide the supplementary information in
the study of mixing between the heavy Majorana neutrino
and the standard model neutrino v, in D meson decays.
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