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We report the observation and study of the decay J=ψ → ϕηη0 using1.3 × 109 J=ψ events collectedwith the
BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be
ð2.32� 0.06� 0.16Þ × 10−4. We also report evidence for a structure, denoted as X, in the ϕη0 mass spectrum
in the 2.0–2.1 GeV=c2 region. Using two decaymodes of the η0 meson (γπþπ− and ηπþπ−), a simultaneous fit
to theϕη0 mass spectra is performed.Assuming the quantumnumbers of theX to be JP ¼ 1−, its significance is
found to be 4.4σ, with a mass and width of ð2002.1� 27.5� 21.4Þ MeV=c2 and ð129� 17� 9Þ MeV,
respectively, and a product branching fraction BðJ=ψ → ηXÞ × BðX → ϕη0Þ ¼ ð9.8� 1.2� 1.7Þ × 10−5.
Alternatively, assuming JP ¼ 1þ, the significance is 3.8σ, with a mass and width of ð2062.8� 13.1�
7.2Þ MeV=c2 and ð177� 36� 35Þ MeV, respectively, and a product branching fraction BðJ=ψ → ηXÞ×
BðX → ϕη0Þ ¼ ð9.6� 1.4� 2.0Þ × 10−5. The angular distribution of J=ψ → ηX is studied and the two JP

assumptions of the X cannot be clearly distinguished due to the limited statistics. In all measurements the
first uncertainties are statistical and the second systematic.

DOI: 10.1103/PhysRevD.99.112008

I. INTRODUCTION

Exotic hadrons, e.g., glueballs, hybrid states and multi-
quark states, are allowed in the framework of quantum
chromodynamics (QCD), but no conclusive evidence for
them has yet been found in the light hadron sector. The
decay J=ψ → VPP (where V denotes vector and P denotes
pseudoscalar) is an ideal probe to study light hadron
spectroscopy and to search for new hadrons. There have
been theoretical [1–4] and experimental [5–10] studies
performed, which have mainly been focused on the V recoil
system to search for exotic hadrons. The P recoil system,
on the other hand, could also be utilized to do a similar
study. For example, the Yð2175Þ, denoted as ϕð2170Þ by
the Particle Data Group (PDG) [11], was confirmed in the
process J=ψ → ηYð2175Þ, Yð2175Þ → ϕf0ð980Þ by BESII
[12] and BESIII [13]. Searching for its decay to the ϕη0

state provides valuable input for understanding its nature
[14]. The decay J=ψ → ϕηη0 has not been studied before,
and could aid in our understanding of J=ψ decay mech-
anisms and offers an opportunity to study possible inter-
mediate states.
In this article, we report the observation and study of the

decay J=ψ → ϕηη0 using ð1310.6� 7.0Þ × 106 J=ψ events
[15] collected with the BESIII detector. Its branching
fraction, including all possible intermediate states, is
measured. We also report evidence for a structure denoted
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as X in the ϕη0 mass spectrum in the 2.0–2.1 GeV=c2

region. The mass and width of this structure, as well as the
product branching fraction BðJ=ψ → ηXÞ × BðX → ϕη0Þ,
are measured. The ϕ meson is reconstructed through its
KþK− decay mode, η through γγ, and η0 through both
γπþπ− and ηπþπ− (with the η → γγ), denoted as mode I and
mode II, respectively.

II. BESIII EXPERIMENT AND
MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer [16]
located at the Beijing Electron Position Collider (BEPCII)
[17]. The cylindrical core of the BESIII detector consists of
a helium-based multilayer drift chamber (MDC), a plastic
scintillator time-of-flight system (TOF), and a CsI(Tl)
electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0 T
(0.9 T in 2012) magnetic field. The solenoid is supported
by an octagonal flux-return yoke with resistive plate
counter muon identifier modules interleaved with steel.
The acceptance of charged particles and photons is 93%
over 4π solid angle. The charged-particle momentum
resolution at 1 GeV=c is 0.5%, and the dE=dx resolution
is 6% for electrons from Bhabha scattering. The EMC
measures photon energies with a resolution of 2.5% (5%) at
1 GeV in the barrel (end cap) region. The time resolution of
the TOF barrel part is 68 ps, while that of the end cap part
is 110 ps.
Simulated data samples produced with a GEANT4-based

[18] Monte Carlo (MC) package, including the geometric
description of the BESIII detector and the detector response,
are used to determine the detection efficiency and to estimate
the backgrounds. The simulation of the eþe− collisions
includes the beam energy spread and initial state radiation
(ISR) and is modeled using the generator KKMC [19]. The
inclusive MC sample consists of the production of the J=ψ
resonance and the continuum processes incorporated in
KKMC [19]. The known decay modes are modeled with
EVTGEN [20] using branching fractions taken from the
PDG [11], and the remaining unknown decays from the
charmonium states with LUNDCHARM [21]. Final state
radiation (FSR) from charged final state particles is incorpo-
rated with the PHOTOS package [22].

III. EVENT SELECTION AND DATA ANALYSIS

Charged tracks are reconstructed from hits in the MDC.
We select four charged tracks with net charge zero in the
polar angle range j cos θj < 0.93, and require their points of
closest approach to the eþe− interaction point to be within
�10 cm in the beam direction and 1 cm in the plane
perpendicular to the beam direction. The dE=dx and TOF
measurements are combined to form particle identification
(PID) confidence levels for the π, K and p hypotheses.
We require that one KþK− pair and one πþπ− pair are

identified. A vertex fit that assumes the πþπ−KþK− tracks
all come from a common vertex is applied.
Photons are reconstructed from electromagnetic showers

in the EMC. At least three photons are required for mode I
and four for mode II. The minimum energy for showers to
be identified as photons in the barrel region (j cos θj < 0.8)
is 25 MeV, and in the end caps (0.86 < j cos θj < 0.92) is
50 MeV. Showers out of the above regions are poorly
reconstructed and not used in this analysis. To suppress
showers from charged particles, a photon must be separated
by at least 10 degrees from the nearest charged track. EMC
cluster timing requirements suppress electronic noise and
energy deposits unrelated to this event.
Four-constraint (4C) kinematic fits are applied to all

combinations of photons, and only the combination with
the smallest χ24C is kept. We only keep those events with
χ24C ≤ 40 for mode I and χ24C ≤ 80 for mode II. To suppress
background events containing π0’s, those events with the
invariant mass of any photon pair within a π0 mass window
[0.12 ≤ MðγγÞ ≤ 0.15 GeV=c2] are rejected. For mode I,
the combination with the smallest value of δ21 ¼
½Mðγ1γ2Þ −mη�2=σ2η þ ½Mðγ3πþπ−Þ −mη0 �2=σ2η0 is used to
assign photons to the η and η0. Here mη and mη0 are the
nominal η and η0 masses [11], respectively; ση and ση0 are
the mass resolutions determined from signal MC simula-
tion. Mass windows for the η, ϕ and η0 mesons are (in
GeV=c2) 0.522 ≤ MðγγÞ ≤ 0.573, 1.010 ≤ MðKþK−Þ ≤
1.030 and 0.936 ≤ Mðγπþπ−Þ ≤ 0.979. Mðπþπ−Þ is
required to be less than 0.87 GeV=c2 to suppress the
background from the J=ψ → ηϕf0ð980Þ process as shown
in Fig. 1. For mode II, we use the combination with the
smallest δ22 ¼ ½Mðγ1γ2Þ −mη�2=σ2η þ ½Mðγ3γ4Þ −mη�2=σ2η
for the best η meson combination; the η for which
Mðπþπ−ηÞ is closest to mη0 is attributed to the candidate
decaying from the η0. Mass windows for the η, ϕ and η0

mesons are (in GeV=c2) 0.509 ≤ MðγγÞ ≤ 0.586, 1.010 ≤
MðKþK−Þ ≤ 1.030 and 0.920 ≤ Mðηπþπ−Þ ≤ 0.995.
Figure 2 shows the distributions of Mðγπþπ−Þ versus

MðKþK−Þ for mode I and Mðηπþπ−Þ versus MðKþK−Þ
for mode II. The background inferred from the η side-
bands is negligible according to both the study of the
data and the corresponding inclusive MC samples for
J=ψ decays. The non-ϕ and/or non-η0 backgrounds are
determined by the weighted sums of the horizontal and
vertical sidebands with the entries in the diagonal
sidebands subtracted to compensate for the double
counting of background components. The different side-
bands are illustrated in Fig. 2 and the weighting factors
are obtained from the 2-dimensional (2D) fits to the
mass spectra of Mðγπþπ−Þ versus MðKþK−Þ and
Mðηπþπ−Þ versus MðKþK−Þ. The ϕ and η0 meson
signals are seen clearly in both modes. The three body
decay J=ψ → ϕηη0 is thus established, which is the first
observation of this decay.
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IV. MEASUREMENT OF BðJ=ψ → ϕηη0Þ
The branching fraction for J=ψ → ϕηη0, including all

possible intermediate states, is measured. Following the
procedure in Ref. [23], the regions of M2ðϕη0Þ versus
M2ðϕηÞ are divided into 40 × 40 areas (each area is tagged
by i and j) and the numbers of events (nijdata), non-ϕ and/or
non-η0 background (nijbkg) and efficiency (ϵij) are obtained
individually in each area. Then BðJ=ψ → ϕηη0Þ is deter-
mined by

B ¼ Ncorr

NJ=ψBðη → 2γÞBðϕ → KþK−ÞBη0
; ð1Þ

where Ncorr is the efficiency-corrected number of signal
events and is determined from Ncorr ¼ Σij½ðnijdata − nijbkgÞ=
ϵij]; NJ=ψ is the total number of J=ψ events [15]; B is the
PDG branching fraction [11]; Bη0 is Bðη0 → γπþπ−Þ for
mode I and Bðη0 → ηπþπ−Þ × Bðη → γγÞ for mode II. The
total signal yield after background subtraction is 1684� 48
for mode I and 510� 25 for mode II; BðJ=ψ → ϕηη0Þ is
determined to be ð2.31� 0.07Þ × 10−4 for mode I and

ð2.34� 0.12Þ × 10−4 for mode II. The uncertainties are
statistical only. The weighted average [24] of the results for
the two η0 decay modes is ð2.32� 0.06� 0.16Þ × 10−4,
after taking into account the correlations between uncer-
tainties from the two modes, as denoted with asterisks in
Table I.
The systematic uncertainties in BðJ=ψ → ϕηη0Þ mea-

surements are shown in Table I. The uncertainties from
MDC tracking and PID efficiencies are established to be
1.0% per pion/kaon in Refs. [25,26]. The uncertainty
related to photon detection is determined to be 0.6% per
photon in Ref. [27]. The uncertainties associated with the
4C kinematic fit are studied with the track parameter
correction method [28] and the differences between the
efficiencies with and without corrections are regarded as
uncertainties; the influence of the χ24C requirement is also
considered in the uncertainty determination. The sideband
regions of the ϕ and η0 mesons are shifted by 1σ (the
nominal width of signal region corresponds to 3σ), and
the effects on the results are assigned as uncertainties.
The uncertainties from mass windows are determined by
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FIG. 1. The Mðπþπ−Þ distribution for mode I, where dots with
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FIG. 2. Distributions ofMðγπþπ−Þ versusMðKþK−Þ for mode I (a) andMðηπþπ−Þ versusMðKþK−Þ for mode II (b), where the (red)
solid rectangles show the signal regions; the (blue) dotted and (green) dashed rectangles represent the 2D sidebands.

TABLE I. Systematic uncertainties in BðJ=ψ → ϕηη0Þ. The
correlated sources between the two η0 decay modes are denoted
with asterisks.

Sources Mode I (%) Mode II (%)

MDC tracking* 4.0 4.0
PID* 4.0 4.0
Photon detection* 1.8 2.4
Kinematic fit 2.5 1.1
Sideband regions 0.1 0.3
Mass window for η 0.5 0.7
Mass window for ϕ 0.9 1.0
Mass window for η0 0.7 0.6
MC statistics 0.6 0.9
Branching fractions* 2.1 2.1
Number of J=ψ* 0.6 0.6
2D binning 3.9 2.2

Total 8.0 7.2
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smearing the mass spectra from MC simulation to com-
pensate for the differences between the resolutions from
data and MC; the differences between efficiencies before
and after smearing are taken as uncertainties. The
influences of finite MC statistics are taken into account.
The uncertainties due to quoted branching fractions and
number of J=ψ events are from the PDG [11] and Ref. [15],
respectively. The uncertainties from the 2D binning method
are obtained by changing the numbers of areas in the
BðJ=ψ → ϕηη0Þ determination. The total systematic uncer-
tainties are obtained by summing all contributions in
quadrature, assuming they are independent.

V. STUDY OF AN INTERMEDIATE STATE
IN THE ϕη0 MASS SPECTRUM

Figure 3 shows Dalitz plots for modes I and II. Both
have concentrations of events with M2ðϕη0Þ values near
4.5 ðGeV=c2Þ2. There are also diagonal bands in both
modes corresponding to the process J=ψ → ϕf0ð1500Þ,
f0ð1500Þ → ηη0 according to studies of the MC samples.
Apart from these, no other structures are evident.

A. Simultaneous fit

With the assumption that there is anX structure in the ϕη0

mass spectrum in the 2.0–2.1 GeV=c2 region, correspond-
ing to the clusters near 4.5 ðGeV=c2Þ2 visible in Fig. 3,
a simultaneous fit is performed on the ϕη0 mass spectra for
modes I and II. Since the spin-parity value (JP) of the
structure could affect the relative orbital angular momenta
between the decay products of J=ψ → ηX and X → ϕη0,
the fits with two different assumptions on the JP value are
both performed. However, due to the limited statistics, they
cannot clearly be distinguished. In the simultaneous fits, the
interference between the structure and the direct decay
J=ψ → ϕηη0 is not considered.
Assuming the JP value of the structure to be 1−, the

signal component is parametrized by

����� 1

m2 −M2 þ iMΓ=c2

����
2

× ðpqÞ3 × ϵ

�
⊗ R; ð2Þ

wherem is the reconstructed mass of the ϕη0 system;M and
Γ are the mass and width of the structure in the constant-
width relativistic Breit-Wigner (BW) function; the P-wave
phase space (PHSP) factor ðpqÞ3 is considered in the partial
width, where p is the ϕ momentum in the ϕη0 rest frame,
and q is the η momentum in the J=ψ rest frame; ϵ denotes
the efficiency and R is the double-Gaussian resolution
function, both of which are determined from a signal MC
simulation. The mass and width of the BW function are
allowed to float but are constrained to be the same for both
modes; the signal ratio of the two modes is fixed based on
PDG η0 branching fractions [11] and MC-determined effi-
ciencies. The total signal yield for the two modes is allowed
to float in the fit. The background components consist of
nonresonant ϕηη0, J=ψ → ϕf0ð1500Þ, f0ð1500Þ → ηη0 and
non-ϕ and/or non-η0 processes. For the nonresonant ϕηη0
process, the line shapes are derived from the MC simulation
of J=ψ → ϕηη0 process generated according to PHSP, and
the ratio of background numbers for the two modes is
fixed, similar to the signal case. For J=ψ → ϕf0ð1500Þ,
f0ð1500Þ → ηη0 background, whose influence on the
structure is small, the shapes are from MC simulation;
BðJ=ψ→ϕf0ð1500ÞÞ×Bðf0ð1500Þ→ππÞ and BðJ=ψ →
ϕf0ð1500ÞÞ × Bðf0ð1500Þ → KK̄Þ from BESII [9],
together with Bðf0ð1500Þ → ππÞ, Bðf0ð1500Þ → KK̄Þ
and Bðf0ð1500Þ → ηη0Þ from the PDG [11], are used to
obtain the expected number of f0ð1500Þ, and the back-
ground number is fixed to the expected value. The non-ϕ
and/or non-η0 backgrounds are determined from the 2D
sidebands of the ϕ and η0 mesons as shown in Fig. 2.
Figure 4 shows the results of the simultaneous fit, where

the mass and width of the structure are determined to be
ð2002.1� 27.5Þ MeV=c2 and ð129� 17Þ MeV, respec-
tively. The log-likelihood value is 15591.8, with a good-
ness-of-fit value of χ2=d:o:f: of 20.98=26 ¼ 0.81 for mode
I and 25.97=26 ¼ 1.00 for mode II. The statistical signifi-
cance of the new structure is calculated to be larger than
10σ, determined from the change of the log-likelihood
values and the numbers of free parameters in the fits with
and without the inclusion of the structure. After smearing
the likelihood curve with the Gaussian-distributed
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FIG. 3. Dalitz plots for modes I (a) and II (b).
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systematic uncertainties (Table III), the significance is
evaluated to be 4.4σ. Many checks have been done to
make sure that none of the possible background contribu-
tions could produce peaking backgrounds in the
2.0–2.1 GeV=c2 region in the ϕη0 mass spectrum. A
comparison between data and MC also indicates no
significant structures in the ϕη mass spectrum.
Assuming the JP value of the structure to be 1þ, the

simultaneous fit with the S-wave PHSP factor pq in
the partial width is performed with results shown in
Fig. 5. The mass and width of the structure are determined
to be ð2062.8� 13.1Þ MeV=c2 and ð177� 36Þ MeV,
respectively. The log-likelihood value is 15595.9, with a
goodness-of-fit value of χ2=d:o:f: of 16.68=26 ¼ 0.64 for
mode I and 24.36=26 ¼ 0.94 for mode II. The significance
of the structure after considering the systematic uncertain-
ties (Table IV) is evaluated to be 3.8σ.

B. Angular distribution

The JP assignment for the structure is investigated by
examining the distribution of j cos θj, where θ is the η polar

angle in the J=ψ rest frame. If JP ¼ 1−, the decay J=ψ → ηX
takes place through a P wave, neglecting the higher orbital
angular momenta due to the closeness of the threshold, and
the j cos θj is expected to follow a 1þ cos2θ distribution. If
JP ¼ 1þ, the above decay takes place through an S wave,
where the j cos θj distribution is expected to be flat.
The events are divided into four intervals of j cos θj, and

the total signal yield in each interval is obtained with the
same simultaneous fit method with a 1þ assumption, as
described above. After efficiency correction and normali-
zation, the j cos θj distribution of data is shown in Fig. 6,
together with the fitting results with the 1− and 1þ

assumptions. The 1− assumption has χ2=d:o:f: value being
10.55=3 ¼ 3.52 while for the 1þ assumption it is
4.41=3 ¼ 1.47. Although the χ2=d:o:f: value favors the
1þ assumption, these two assumptions cannot clearly be
distinguished due to the limited statistics. The 0þ

assumption is ruled out because it violates JP conservation,
and the 0− assumption is rejected at 99.5% confidence level
from the Pearson χ2 test. The results of simultaneous fit
with 1− assumption are consistent with those from 1þ.
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FIG. 4. Results of the simultaneous fit with the 1− assumption for modes I (a) and II (b). Dots with error bars are experimental data
and the (red) solid curves show the fit model. The (blue) dashed curves are the signal component. The (violet) dotted curves show the
background from the J=ψ → ϕηη0 PHSP process. The (orange) dot-dashed curves represent the background from the
J=ψ → ϕf0ð1500Þ, f0ð1500Þ → ηη0 process. The (green) long-dashed curves show the non-ϕ and/or non-η0 backgrounds.
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FIG. 5. Results of the simultaneous fit with the 1þ assumption for modes I (a) and II (b). Dots with error bars are experimental data
and the (red) solid curves show the fit model. The (blue) dashed curves are the signal component. The (violet) dotted curves show
the background from the J=ψ → ϕηη0 PHSP process. The (orange) dot-dashed curves represent the background from the
J=ψ → ϕf0ð1500Þ, f0ð1500Þ → ηη0 process. The (green) long-dashed curves show the non-ϕ and/or non-η0 backgrounds.
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C. Measurement of the product branching fraction

The product branching fraction to the ηϕη0 final state via
X is

BðJ=ψ → ηXÞ × BðX → ϕη0Þ

¼ Nsig

NJ=ψBðη → 2γÞBðϕ → KþK−Þϵ̄ ; ð3Þ

where Nsig is the total signal yield from the two modes in
the simultaneous fit; ϵ̄ is Bðη0→ γπþπ−ÞϵIþBðη0→ηπþπ−Þ
Bðη→2γÞϵII, where ϵI and ϵII are the detection efficiencies
determined from signal MC simulation after considering
the JP value of the structure and the angular distributions of
the η, ϕ and η0; the other variables have been defined
before. The measured Nsig and BðJ=ψ→ηXÞ×BðX→ϕη0Þ
values for the 1− and 1þ assumptions are summarized in
Table II, where the uncertainties are statistical only.

D. Systematic uncertainties

Tables III and IV summarize the systematic uncertainties
in the measurements of mass and width of the structure, as
well as BðJ=ψ → ηXÞ × BðX → ϕη0Þ for the 1− and 1þ
assumptions, respectively. In case there are differences
between the uncertainties from the two modes, the more
conservative values are used.
The signal parametrization is changed from a constant-

width BW function to a BW with mass-dependent width.
The impact on the signal yield is taken as the uncertainty of
BðJ=ψ → ηXÞ × BðX → ϕη0Þ. The pole mass (mpole) and

pole width (Γpole) are obtained by solving for the complex
equation P ¼ mpole − iΓpole=2 for which the BW denom-
inator is zero, and the differences between the mass and
width from the nominal fit and mpole and Γpole are
considered as the uncertainties of mass and width, respec-
tively. To obtain the uncertainties associated with the
f0ð1500Þ component of the data, the background levels
in the simultaneous fit are varied by �1σ [9,11], where σ
denotes the uncertainty on the determined number of the
f0ð1500Þ, and the maximum changes in the fit results are
regarded as uncertainties. We also vary the nonresonant
ϕηη0 background levels by �1σ, and take the largest
influences on the fit results as the uncertainties due to
the PHSP assumption. We vary the range of the simulta-
neous fit by 5% and take the largest deviations of the fitting
results as uncertainties. To obtain the uncertainties due to
the Mðπþπ−Þ requirement for mode I, it is relaxed from
0.87 to 0.90 GeV=c2 and the effects on the fitting results
are considered as uncertainties. The two possible extra
structures around 2.3 GeV=c2 in Figs. 4(b) and 5(b) are
considered. Following the procedure in Ref. [13], we use
BW functions convolved with a resolution function to
describe them and the corresponding significances are
determined to be less than 1.1σ, and they are not considered
in the nominal result. However, their impacts on the fitting
results are taken as systematic uncertainties. The difference
between the fitted η mass and that from the PDG [11] is
taken as the uncertainty due to momentum calibration. The
descriptions of other items are included in Table I. The total
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FIG. 6. Distribution of the η polar angle in the J=ψ rest frame.
Dots with error bars are experimental data. The (violet) dashed
curve is the fitting result with the 1− assumption, and the (red)
solid curve is that with the 1þ assumption.

TABLE II. Measured Nsig and BðJ=ψ → ηXÞ × BðX → ϕη0Þ
values for the 1− and 1þ assumptions.

JP Nsig BðJ=ψ → ηXÞ × BðX → ϕη0Þ
1− 658� 77 ð9.8� 1.2Þ × 10−5

1þ 642� 88 ð9.6� 1.4Þ × 10−5

TABLE III. Systematic uncertainties in the mass and width of
the structure, as well as BðJ=ψ → ηXÞ × BðX → ϕη0Þ (denoted
as BX in this table) for the 1− assumption.

Sources
Mass

(MeV=c2)
Width
(MeV) BX (%)

Signal parametrization 9.1 2 2.9
f0ð1500Þ 9.5 5 11.6
PHSP assumption 15.2 5 9.8
Fitting range 6.3 3 3.1
Mðπþπ−Þ requirement 1.8 2 0
Extra structures 2.5 0 1.1
Momentum calibration 0.7 � � � � � �
Sideband regions 0.9 2 0.4
MDC tracking � � � � � � 4.0
PID � � � � � � 4.0
Photon detection � � � � � � 2.4
Kinematic fit � � � � � � 3.0
Mass window for η � � � � � � 0.7
Mass window for ϕ � � � � � � 1.0
Mass window for η0 � � � � � � 0.7
MC statistics � � � � � � 0.9
Branching fractions � � � � � � 2.1
Number of J=ψ � � � � � � 0.6

Total 21.4 9 17.5
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systematic uncertainties are the quadrature sums of the
individual contributions, assuming they are independent.

VI. SUMMARY AND DISCUSSION

In summary, using ð1310.6� 7.0Þ × 106 J=ψ events
collected with the BESIII detector, we report the observa-
tion and study of the process J=ψ → ϕηη0. Its branching
fraction, including all possible intermediate states, is
determined to be ð2.32� 0.06� 0.16Þ × 10−4. Evidence
for a structure denoted as X in the ϕη0 mass spectra in two
dominant η0 decay modes is reported, and a simultaneous fit
is performed. Assuming the JP value of the structure to be
1−, the significance of the structure is evaluated to be 4.4σ;
the mass and width are determined to be ð2002.1� 27.5�
21.4Þ MeV=c2 and ð129� 17� 9Þ MeV, respectively; the
product branching fraction BðJ=ψ → ηXÞ × BðX → ϕη0Þ
is measured to be ð9.8� 1.2� 1.7Þ × 10−5. The mass of
the structure is over 5σ away from that of the Yð2175Þ in
the PDG [11], suggesting the structure might not be the

Yð2175Þ. For a 1þ assumption, the significance is evaluated
to be 3.8σ; the mass and width are determined to be
ð2062.8� 13.1� 7.2Þ MeV=c2 and ð177�36�35ÞMeV,
respectively; the product branching fraction BðJ=ψ→ηXÞ×
BðX→ϕη0Þ is measured to be ð9.6� 1.4� 2.0Þ × 10−5.
The angular distribution is studied and the 1− and 1þ
assumptions cannot clearly be distinguished due to the
limited statistics. No meson candidate in the PDG has mass,
width and JP values that are compatible with the structure.
More studies with a larger J=ψ data sample in the future
might help to better understand the structure, including a JP

determination and precise measurements of the mass,
width, and product branching fraction.
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