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A B S T R A C T

Feature extraction is one of the most important preprocessing steps in predicting the interactions between RNAs
and proteins by applying machine learning approaches. Despite many efforts in this area, still, no suitable
structural feature extraction tool has been designed. Therefore, an online toolbox, named RPINBASE which can
be applied to different scopes of biological applications, is introduced in this paper. This toolbox employs ef-
ficient nested queries that enhance the speed of the requests and produces desired features in the form of positive
and negative samples. To show the capabilities of the proposed toolbox, the developed toolbox was investigated
in the aptamer design problem, and the obtained results are discussed. RPINBASE is an online toolbox and is
accessible at http://rpinbase.com.

1. Introduction

RNA and protein are two major biological macromolecules and their
interaction can have profound effects in different fields including the
regulation of gene expression [1–4], protein synthesis [5,6], viral re-
plication, and cellular defense mechanism [7–10]. Despite the im-
portance of these structures, it is difficult to identify their interaction
using experimental methods, as they are expensive and time-con-
suming. Thus, there is an increasing need to have machine learning
approaches to accurately predict these interactions [11–16]. Structural
feature extraction is one of the most important preprocessing steps in
this area. Recent developments in clarifying RNA and protein structural
features have increased the need to design different tools, aiming at the
investigation of interactions between RNA and protein. Despite several
studies on the issue, no suitable structural feature extraction tool has
been designed, yet.

RPINBASE is a repository of all RNA-protein complexes stored in the
Protein Data Bank (PDB) [17] with a toolbox to quickly execute the
queries, generate and download ready- to- learn datasets. It is available

at http://rpinbase.com for free. The query executor module of RPINB-
ASE contains a wide range of features (Supplementary File 1: Macro-
molecules Features) related to the primary and secondary structural
elements of RNA and protein macromolecules. At the level of the pri-
mary structure, it allows queries to request protein and RNA sequences
with different lengths and searches various substrings between the ex-
isting sequences. Moreover, the phylogeny data on the family and clan
of protein sequences are available. At the secondary structural level, it
allows queries that contain different relevant secondary structure fea-
tures of RNA and protein macromolecules. The query structure of
RPINBASE is designed based on the nested object concepts in object-
oriented programming [18–20] to respond to diverse demands related
to the study of different aspects of RNA-protein binding. Therefore, one
complex query can be broken down into a series of logical subqueries.
These subqueries are created based on the characteristics of the primary
and secondary structures of macromolecules. Thus, these subqueries are
aggregated to form one nested query and then, this query is sent to the
database. There is no dispute over the importance of machine learning
as a fast-growing approach in this field. Accordingly, RPINBASE can be
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an option to create downloadable positive and negative datasets with
non-redundant sequences to train and test classifiers. The type of con-
tent of these datasets can be chosen by users as raw sequences or pre-
extracted feature vectors. Here, non-interacting (negative) samples are
generated using protein clans while interacting (positive) samples are
generated utilizing atomic-distances.

2. Related work

In this section, we have investigated the resources used in the scope
of RNA-protein interaction. We divided the databases into two cate-
gories as following:

(i) Protein annotation databases: several databases store RNA–protein
interactions along with annotations on protein structures such as
the Nucleic Acids-Protein Interaction Database (NPIDB) [21], the
RNA-Binding Protein Database (RBPDB) [22], the noncoding RNAs
and protein related biomacromolecules interaction database
(NPInter) [23], Protein-RNA interaction predictions for model or-
ganisms with supporting experimental data (RNAct) [24], and the
Protein-RNA Interface Database (PRIDB) [25]. By integration dif-
ferent data sources and their unification, some of these databases
have tried to be comprehensive and broader, while there are some
others have only focused on one category. The majority of these
databases are not capable of running desired queries of RNA and
protein structural features on the RNA-protein complexes.

(ii) RNA annotation databases: some databases such as the Nucleic Acid
Database (NDB) [26], the RNA secondary structure and statistical
analysis database (RNA Strand) [27], the RNA Characterization of
Secondary Structure Motifs (RNA CoSSMos) [28], the RNA FRAg-
ment search engine & dataBASE (RNA FRABASE) [29], and the
Universe of RNA Structures DataBase (URSDB) [30], have provided
beneficial data on RNA structures and structural motifs. They have
been used to analyze RNA secondary structures in different studies.
The advanced search of existing databases has a linear query
structure which is inconvenient for complex requests.

In addition, there are other types of tools such as RPISeq [31,32]
and RNA–Protein interaction predictor (RPI-Pred) [33] being developed
to study the interaction between RNA and protein macromolecules with
pre-defined features. Generally, these predictive tools focus on some of
the pre-defined features of macromolecules.

Despite the need to execute queries for RNA and protein features,
simultaneously in the case of investigating complexes, these databases
have just focused on RNAs or protein macromolecules separately. On
the other hand, existing databases have linear query structures. All
conditional statements in this query structure have the same priority.
Consequently, the linear query structure is inconvenient for complex
requests, while the nested query structure enables one to achieve this
goal. Another challenge about most databases in the field of nucleic
acid-protein interaction is that they only focus on interacting (positive)
samples and do not contain validated non-interacting (negative) sam-
ples. Hence, the majority of these studies have addressed the challenge
by using atomic-distance with an arbitrary threshold or by random
pairing [31,33–40]. In a study by Cheng et al. [41] a scoring method
was applied using Gene Ontology (GO) [42], the Protein Families da-
tabase (Pfam) [43], and the Universal Protein Resource (UniProt) [44]
databases to generate negative datasets.

Given the pros and cons of the mentioned tools and databases, we
aimed to develop the RPINBASE accordingly. Utilizing RPINBASE has
several merits including (i) generating queryable positive samples from
PDB complexes (based on multilevel atomic distances: 3.4 Å, 3.7 Å, 5 Å,
7 Å, and 10 Å), (ii) generating queryable artificial proposed negative
samples (based on family and clan), (iii) providing a wide range of
extracted features for primary and secondary structures of RNA and
protein macromolecules, (iv) selecting efficient and high-performance

dataset powered by preprocessed and stored data to download feature
vectors quickly, (v) providing powerful query engine to eliminate du-
plicated queries by nested structures, and finally (vi) the possibility of
sample filtering by PDB information and structural features of macro-
molecules.

3. Materials and methods

Stored data on RPINBASE were prepared as the following: initially,
the contents of PDB structures were extracted, cleaned, and converted
to a suitable format for database design. Then, the values of structural
features of the macromolecules were calculated and appended to the
database and finally, the positive and negative datasets were con-
structed.

3.1. Data gathering and preprocessing

RPINBASE is a repository of RNA-protein complexes. Initially, all
structures were extracted from the PDB and then, the PDB files, with at
least one protein and one RNA sequence, were stored as the target
samples. The database of our toolbox analyzed 2258 complexes (since
June 2018). In the preprocessing step, duplicated chains and sequences
which contained unknown alphabets were recognized and ignored. For
example, the complex with the PDB id ‘3oij’ has two protein chains (A,
B) and two RNA chains (C, D). Moreover, A, B in protein chains and C, D
in RNA chains were identical. Consequently, we removed one protein
and one RNA chain and then, obtained the BeC as a positive and non-
redundant sample. To investigate which chains of proteins directly in-
teracted with the RNA chains, the analysis of 3D structures of macro-
molecules in the complexes was carried out. Different thresholds were
used to differentiate the interaction between chains of macromolecules
and have subtle effects on the qualities of various methods [45]. Suresh
et al. [33] and Adjeroh et al. [46] used the threshold of 3.4 Å. In an-
other studies, BindN+ [47], RISP [48] and PRBR [49] used the 3.5 Å
cutoff. ProteRNA [50] and RNABindR [51] used the threshold of 5 Å.
Few studies have used larger thresholds such as 7 Å [35] and 8 Å [31].
It should be noted that smaller cutoffs are used most often in prediction
methods. In this study, we applied five frequently-used thresholds be-
tween 3.4 Å and 10 Å. Therefore, if the atomic distance between RNA
and a chain of protein in the PDB files was less than the selected
threshold, these two chains were identified as interacting pairs. One out
of 3.4 Å, 3.7 Å, 5 Å, 7 Å, and 10 Å was selected as a threshold to
distinguish strongly interacting pairs. Users can also choose one of these
distances to select highly interacting pairs. Afterward, the secondary
structures of the protein sequences assigned by Define Secondary
Structure of Proteins (DSSP) [52] were extracted from PDB. The Protein
Secondary Structure Prediction server (JPred) [53] was used to predict
the secondary structure of sequences that did not include any DSSP
assignment. Besides, the RNA fold from the Vienna package [54] was
applied to predict the secondary structure of RNA sequences. Finally,
the family and clan of protein sequences were extracted from the Pfam.
The process of storing data on sequences is illustrated in Fig. 1.

3.2. Structural processing of macromolecules

The main aim of RPINBASE is to provide a suitable resource to
construct the desired datasets based on diverse features of RNA mac-
romolecule or protein macromolecule in a complex. Therefore, the final
stored data in the last step were processed to extract all possible fea-
tures of the first and secondary structures. Furthermore, phylogenic
information of the macromolecules was extracted from the Pfam data-
base. Hence, it was possible to create the desired dataset based on a
specific family or clan. In the case of a primary structure, RPINBASE
supported substrings and lengths of RNA and protein sequences. On the
secondary structure level, this toolbox contained the information of
RNA secondary structure elements (Stem, Hairpin, Bulge, Internal loop,
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and Multi-Loop), and protein secondary structure (Alpha Helix, Beta
Sheet, and Coil). According to the DSSP algorithm, the assignment of
the specified protein secondary structure has eight elements. These
eight letters were translated into three letters to ease their interpreta-
tion [55]. Here, the results of a study by Liu et al. [56] were used to
calculate the number of parallel and antiparallel beta sheets. In addi-
tion, general information concerning structural elements was processed
using different algorithms [57–59] and their results were presented to
be used in queries. Moreover, the values of some features of protein
chains were calculated using “protein encoding toolbox” [60] and ap-
pended to the database. Here, those proteins with a sequence length of
fewer than 20 amino acids were excluded. Supplementary File 1:
Macromolecules Features, describes these features.

3.3. Generating negative and positive datasets

In the present study, the family and clan of protein sequences were
applied to generate non-interacting pairs. To this aim, an infrastructure
was constructed to interact with RNA-protein pairs by observing ex-
perimental reports and constructing non-interacting RNA-protein pairs
based on family and clan of protein sequences. There were 9367 protein
families, and these families were classified into 604 clans in the Pfam
database. Interestingly, RNA-protein complexes only covered 111 clans
and 620 families in the Pfam. Owing to this fact, we introduced the idea
of using family and clan of protein sequences to generate non-inter-
acting pairs (negative samples). We took into account only the clans of
RNA binding proteins to ensure that only the relevant features are
considered. Moreover, the distinction between positive and negative
samples was made based on specific features of macromolecules being
capable of composing the RNA-protein complex. Positive samples were
composed by combining protein chains with RNA sequences of com-
plexes whose distances were less than those in the selected thresholds of
3.4 Å, 3.7 Å, 5 Å, 7 Å, and 10 Å. Negative samples were generated by
selecting RNA sequences in a complex and combining them with the
protein sequences that had not been spotted in the same clan of the
given complex. Consequently, users could construct positive and ne-
gative datasets based on the desired family and clan of protein se-
quences. Fig. 2 provides an overview of the formation of positive and
negative samples.

3.4. Nested query

In the present toolbox, recursive functions were applied to evaluate
subqueries in the nested structures. It means that various subqueries
can be created according to the features of the primary and secondary

structures of macromolecules. Then, these subqueries were aggregated
and sent to the database. Nested queries were defined in the form of
nested objects. Each query object is the parent of its own child objects.
In other words, with the assumption of the parent's conditions, each
child node appends more details in a total query and redefines its parent
more accurately. This type of query was implemented using recursive
logic [61,62]. This nonlinear query structure is efficient when it comes
to complex queries and mixed conditional statements on different types
of features.

3.5. Implementation

The ‘database first’ approach was chosen, and the data models were
created from tables. The RPINBASE application was developed drawing
upon a standard three layers of architecture. First, the data access layer
was implemented using Microsoft SQL Server which has the data
storing and retrieving tasks. The second layer is the business layer. This
layer was developed using Active Server Pages (ASP.Net) and is running
on Internet Information Services (IIS). This layer was based on the
Model-View-Controller (MVC) and Entity Framework. All queries are
sent from the business layer to the data access layer and the data access
layer responds appropriately to the query. The third layer is the pre-
sentation layer. Every query is received from the presentation layer via
web services and is validated and forwarded to the data access layers.
The results come from the database and temporary datasets are gen-
erated by related services and functions. Then these datasets are con-
verted to the JavaScript Object Notation (JSON) format and are
transmitted to the presentation layer. The presentation layer (web in-
terface) is created with HyperText Markup Language (HTML) and
AngularJS which provides a dynamic script execution on the clients'
browsers.

4. Results and discussion

RPINBASE is a novel source of RNA-protein interactions that in-
tegrates the annotation of protein and RNA structural elements.
Furthermore, this toolbox can be used to generate three types of data
sets: ‘RNA’, ‘protein’ and ‘RNA-protein interaction’. In this section, first,
the potentials of using RPINBASE are discussed. Second, the perfor-
mance comparison between using our method and a random one is
indicated. Third, using different thresholds for generating positive
samples are evaluated. Finally, two cases of using RPINBASE are de-
monstrated.

Fig. 1. The process of storing macromolecules; contains external data, processes and conditions.
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4.1. Web interface

RPINBASE has been developed in a user-friendly manner consisting
of three main parts of 1-‘Select mode’, 2-’Make a query’ and 3- ‘Result &
download’.

The ‘select mode’ is the entry point of the toolbox and users can
create three types of datasets: ‘RNA-protein pairs’, ‘protein’ and ‘RNA’.
In the ‘make a query’ stage, users create a query based on a selected

mode to request a dataset from the toolbox utilizing specific features.
These pages contain logical blocks to create specific queries. These
blocks are executed according to the rules and precedence of par-
entheses. It means that all items in parentheses are evaluated in-
dependently. Items with nested parentheses are evaluated from inside
to outside. In the ‘Result & download’ stage, users have access to sta-
tistics of the created set and can download and save the results in three
forms (Sequence and PDB, Dataset for Machine Learning and Feature

Fig. 2. Generation of positive and negative samples.

Fig. 3. A screenshot of the result page.
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Information). Fig. 3 shows the result page. First, in “Sequence and PDB”
section, users can download the sequences of macromolecules. Second,
in “Dataset for Machine Learning” section, users can select desired
features and download a dataset for machine learning algorithms.
Third, in “Feature Information” section, users can download additional
information concerning the selected features. The format of output files
is comma-separated CSV with selected columns which can be chosen by
users. Moreover, this toolbox provides a ‘Help’ section with compre-
hensive information and a practical example of RPINBASE's web in-
terface usage (Supplementary File 2: Help).

4.2. Positive and negative samples and their feature vectors

The data storage section of this toolbox contains complex informa-
tion that discriminates RNA-protein pairs as positive samples by cal-
culating atomic distance, negative samples by protein clans, and ex-
tracted feature vectors for each sequence. To generate complex datasets
that contain positive and/or negative samples, RPINBASE concatenates
user-preferred feature vectors of sequences in filtered sample pairs.
Currently, this tool provides hand-designed features. In the other ver-
sions of this toolbox, deep learning-based features are applied to
identify other important characteristics of RNA-protein interactions.
These features are extracted using the deep layers from the various deep
learning models such as Recurrent Neural Network (RNN),
Convolutional neural network (CNN(, Autoencoder (AE), and Deep
Belief Network (DBN) [63–65]. They have a broad range of applications
in biological problems like aptamer-protein interaction [66], protein-
protein interaction [67], and drug-target interaction prediction [68].
Contrary to hand-designed features, deep learning-based features gen-
eralize well to learn abstract feature representation from the raw data.

4.2.1. Performance comparison of proposed datasets
Generally, in supervised machine learning problems with a proper

training process, acquiring desired true results against false ones proves
that the machine succeeds to distinguish between samples by given
features. On the other hand, it indicates that labels of samples are
marked correctly. We created a series of datasets from RPINBASE that
contain all positive samples, without any filtering except for distance,
along with balanced negative samples and give them various binary
classifier algorithms. The acceptable and logical relation of features and
classes can be demonstrated by the performance comparison of training
and testing results [69].

Precision (PRE), recall (REC), accuracy (ACC), and F-Score (FSC)
metrics are used to measure the performance. These metrics are eval-
uated as follows: PRE = TP / (TP + FP), REC = TP / (TP + FN),
ACC = (TP + TN) / (TP + TN + FP + FN), FSC = 2 * (PRE *REC) /
(PRE + REC), where TP is the number of True Positives, TN is the
number of True Negatives, FP is the number of False Positives, and FN is
the number of False Negatives. The performance of various machine
learning algorithms on the protein family dataset and random one was
evaluated. At first, a positive set was generated. This set included the
combination of protein chains with RNA sequences of complexes whose
distances were less than or equal to 3.4 Å. In addition, we generated
sixteen negative sets, eight sets of which were composed of family and
clan method, while the other eight sets were composed utilizing a
random method. The protein family method is mentioned in Section
3.3. “Generating Negative and Positive datasets”. In the random
method, negative samples included a combination of random protein
chains with RNA sequences that were absent in the positive set. The
positive set was combined with all negative sets, one by one, to create
datasets for evaluation in machine learning algorithms. Further, protein
and RNA with sequence lengths of < 20 were excluded from these
positive and negative datasets. Then, the sequential and structural
features of RNA and protein macromolecules were extracted
(Supplementary File 1: Macromolecules features). Finally, for each
dataset, a five-cross validation was performed on Fine Tree, Quadratic

Fig. 4. The accuracy of machine learning algorithms on generated datasets.
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SVM, Cubic SVM, Fine KNN, Ensemble Bagged Tree, and Ensemble
Gentle classifiers. The comparative accuracies of machine learning al-
gorithms between our method and the random one on the generated
datasets are depicted in Fig. 4.

Also, the evaluation of average performances between our method
and the random one is provided in Table 1. The findings revealed that
the performances of all machine learning algorithms for protein family
negative sets were better than those found in random negative sets.

It was also evident that the Ensemble Gentle classifier performed
better than the other classifiers on these datasets. These findings de-
monstrate that the present method can improve the predictive perfor-
mance of RNA-protein interaction.

In addition, further analyses were performed to illustrate the ad-
vantage of generated negative samples using the family & clan method.
The Ensemble Gentle classifier was used to perform these analyses. We
divided them into the following cases:

Case 1: the model was trained using negative samples generated by
the family & clan method and performed on a test set using negative
samples generated by random method.

Case 2: the model was trained using negative samples generated by
the random method and performed on a test set using negative samples
generated by the family & clan method.

By comparing the training results of these two methods, the family
& clan method showed better performance. Along with this, in the test
results of these two cases, the advantages of the family & clan method
were identified. Also, due to the True Negative Rate (TNR) results of
training models and these two cases, we observed that the random
negative datasets are noisier than family & clan datasets. Because the
difference between the TNR value of case1 and TNR value of trained
model using the clan method is higher than the TNR value of case2 and
TNR value of trained model using the random method (Supplementary
File 3: Analyses. Table S1).

The suggested method for generating negative samples implies that
any RNA is less likely to interact with two proteins from different clans.
When the constructed samples in the negative and positive sets were
compared, no common pairs were found in both positive and negative

sets. Further, to support this claim, first, we considered the set of all
protein-binding RNAs. The similarity between any two RNAs was
computed using the normalized Levenshtein distance metric. If they
shared more than 80% sequence identity are kept in the set, otherwise,
they would be discarded. Then, we followed whether these two se-
quences bind to proteins from the same clan or not. In order to evaluate
this, the normalized penalty value was computed according to this
equation as follows: Normalized penalty = 1- abs (number of
Clan1ExceptClan2 in RNA1 – number of Clan2ExceptClan1 in RNA2) /
(number of Clan1ExceptClan2 in RNA1 + number of Clan2ExceptClan1
in RNA2).

A normalized penalty is a metric in similar RNAs, which shows the
proportion of non-shared clans relative to the union of their clans. If the
Normalized penalty value is zero, it will indicate that clans of RNA are
the subset of its mutual pair; otherwise, they bind to different protein
clans (Supplementary File 3: Analyses). We repeated this metric to all
pairs of RNAs. The results were reasonable and showed that only about
1% of this set could not bind to the same clan. Also, by investigating
this error rate in some of the pairs, we observed that although the
primary structure of the RNA sequences was similar, the secondary
structures were different from each other.

4.3. Performance evaluation of different cutoffs

We generated five positive datasets. These sets included the com-
bination of protein chains with RNA sequences of complexes whose
distances were less than or equal to 3.4 Å, 3.7 Å, 5 Å, 7 Å, and 10 Å.
Also, a negative set was generated using the family & clan method. The
negative set was combined with all positive sets, one by one, to create
datasets for evaluation in the Fine Decision Tree classifier. Table S2 in
Supplementary File 3 shows these results. According to Table S2,
smaller thresholds are recommended as an important criterion for
constructing positive interacting pairs. The prediction qualities on the
larger thresholds are characterized by a decrease in sensitivity com-
pared with the smaller thresholds.

Table 1
performance evaluation of family method and random method.

Family & clan method Random method

REC PRE FSC ACC REC PRE FSC ACC

Fine tree 83.80% 84.14% 83.97% 84% 82.87% 79.80% 81.31% 80.94%
Quadratic SVM 86.10% 87.69% 86.89% 87% 84.74% 83.10% 83.92% 83.75%
Cubic SVM 90.59% 88.39% 89.48% 89.34% 88.87% 83.54% 86.13% 85.68%
Fine KNN 90.96% 85.88% 88.35% 87.99% 89.18% 80.05% 84.35% 83.47%
Ensemble bagged tree 87.82% 90.45% 89.12% 89.28% 86.26% 86.53% 86.40% 86.42%
Ensemble gentle 89.71% 90.88% 90.35% 90.35% 87.09% 85.47% 86.28% 86.14%

Table 2
Results of the executed query.

Index Sequence PDB name

1 AGGUGCUGCAUGGCCGUCGUCAACGACGUCUGGUCAGCAUGGCCC 1MVR:A
2 AUCGAAUCGCCACCUACAAGACUGGAGCUUGCUCCCUCGAAGGCGCCAAGUAUAUUCAUGAUCACAAGACA 6AZ3:6
3 GCGGAUUUAACUCAGUUGGGAGAGCGCCUUCGGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3ICQ:D&E
4 GGAGGUAGUAGGUUGUAUAGUAGUAAGACCAGACCCUAGACCAAUUCAUGCC 6BU9:B
5 GGCAUGAAUUGGUCUAGGGUCUGGUCUUACUACUAUACAACCUACUACCUCC 6BU9:C
6 GGGAGUAUAUGGGCGCACUUCGGUGACGGUACAGGCUCCU 4PMI:A
7 GGGAUGCGUAGGAUAGGUGGGAGCCGCAAGGCGCCGGUGAAAUACCACCCUUCCC 1MZP:B
8 GGGGGCGGAAAGGAUUCGACGGGGACUUCGGUCCUCGGACGCGGGUUCGAUUCCCGCCGCCUCCACCA 1P6V:B&D
9 GUCACACCAUGGGAGUGGGUAUUCAUGACUGGGGUGAAGU 1ZN0:C;1ZN1:C
10 GUGCCGGAAGGUCAAGGGGAGGGGUGCAAGCCCCGAACCGAAGCCCCGGUGAAC 2OM7:G
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4.4. Case studies

Two cases of using RPINBASE and its web interface are indicated
below. The first case demonstrates the advantages of the RPINBASE
interface, and the second case indicates the use-case examples of this
toolbox.

4.4.1. Case I: utility of the user interface
In this case, a comparison of the search criteria of three different

databases (RCSB PDB [17], URSDB [30], and RPINBASE) is shown as
the following:

Evaluate the following example:
The selection of all RNA sequences and protein sequences comprises

a combination of the following conditions:

Fig. 5. The RNA structure-predicted secondary structures of RNA aptamer to PSMA and RNA sequences of RPINBASE.

M. Torkamanian-Afshar, et al. Genomics 112 (2020) 2623–2632

2629



4.4.1.1. RNA

• The frequency of Multi Loop and Bulge is greater than one.

OR

• The length of the RNA sequences is greater than 100 AND including
“CGCG” substring.

4.4.1.2. Protein

• The length of the protein sequences is less than 200 AND containing
one parallel beta sheet OR one antiparallel beta sheet.

OR

• The length of the protein sequences is greater than 200, AND the
average coil percentage is equal to 50.

(i) RCSB PDB (http://www.rcsb.org/pdb/search/advSearch.do?
search=new)

Despite the diversity of parameters related to the analysis of protein
structures in this database, there exist some limitations in this regard.
PDB has a linear query structure with only an AND-junction or an OR-
junction. Hence, it does not allow the combination of these clauses.
Further, it does not contain structural features of RNA.

(ii) URS (http://server3.lpm.org.ru/urs/struct.py)

The search option for URS contains different parameters related to
RNA structures and pseudoknots. However, the query engine module
enables us to combine “AND” and “OR” clauses, but they do not have
any nested query structures. In addition, the structural features of
proteins are not supported.

(iii) RPINBASE (http://rpinbase.com)

The search option of RPINBASE has a nested query approach. It
allows us to respond to the diverse demands related to different features
of RNA and protein macromolecules, concurrently. Appending a query
block with its specific criteria inside another query block can be sepa-
rately performed for RNAs and proteins. Figs. 3 and 4 in supplementary
File 2 show how the problem of the example can be solved using nested
query tools as they are provided by the RPINBASE. These properties
make this toolbox to be more flexible than the others.

4.4.2. Case II: use-case examples
For researchers who need statistics about RNA-protein interactions

or datasets for machine learning algorithms, this toolbox is more effi-
cient. Also, the design of oligonucleotide aptamer and regulatory RNAs
such as ribozyme and riboswitch are the fields that require accurate
datasets for computational processes to predict the interactions. For
example, an aptamer is a short sequence of oligonucleotides with high
specificity and affinity, which can bind itself to dedicated small to large
targets [70–75]. Users can order their custom dataset to train a model,
predict and find appropriate sequences of RNA as the initial population
of the aptamer pool.

Consider the following examples:

(i) In Xu et al. [76] study, they determined the structural motifs of an
RNA aptamer to Prostate-Specific Membrane Antigen (PSMA). This
aptamer has a hairpin loop, a bulge loop, two internal loops, and
four stems. Consider an example scenario that an aptamer pool
should be designed to choose high-affinity novel sequences with the
genetic algorithm. So, an initializing population including some
RNA sequences is required to execute the algorithm. Filtered RNA
sequences with the above conditions from RPINBASE can be used
instead of any random RNA set. Through these structural motifs,
RNA sequences from the RPINBASE can be filtered to create an in-
itial aptamer pool. Also, the lengths of aptamers are recommended
between 20 and 80 nucleotides; these criteria are applied to query.
The output results are shown in Table 2.

To gain additional insights into the extracted RNA sequences, RNA
structure was utilized [77] to model the secondary structure prediction
of the RNA sequences. Fig. 5 shows some of these RNA sequences. The
extracted RNA sequences from RPINBASE have similar structure motifs
of RNA aptamer which is indicated in the example. Using these motifs,
novel RNA sequences can be generated.

(ii) Regarding RNA-protein interactions, the RPINBASE creates a da-
taset that can be applied to predict the interaction between desired
protein and existing RNAs. To examine the capabilities of the
RPINBASE, the CD44 biomarker was selected based on its appli-
cations. The results are described as:
CD44 is one of the most commonly used surface markers to identify
cancer stem cells. It plays a key role in the invasion of a wide range
of tumor cells [78,79]. Therefore, finding RNA sequences capable of
binding to CD44 may be promising in designing novel RNA se-
quences. In this regard, the desired dataset was extracted from
RPINBASE and the model was created to train and test the classi-
fiers as mentioned in “section 3.3”. This model was utilized to
predict the RNA-protein interaction. The input of this model's
predictor function is a vector that contains RNA and protein fea-
tures values. So, the input dataset was generated from vectors that
were combined from CD44 and all RNAs' features. The output result
shows the RNA bindable CD44 sequences. Output sequences were

Table 3
interaction probabilities of result sequences.

Index Sequence SVM (ACC) RF (ACC)

1 UCUGGUGACUAUAGCAAGGAGGUCACACCUGUUCCCAUGCCGAACACAGAAGUUAAGGUCUUUAGCGACGAUGGUAGCCA
ACUUACGUUCCGCUAGAGUAGAACGUUGCCAGGC

0.79 0.8

2 GUUCGCGAAGUAACCCUUCGUGGACAUUUGGUCAAUUUGAAACAAUACAGAGAUGAUCAGCAGUUCCCCUGCAUAAGGAU
GAACCGUUUUACAAAGAGAUUUAUUUCGUUUU

0.93 0.85

3 CGACUCUUAGCGGUGGAUCACUCGGCUCGUGCGUCGAUGAAGAACGCAGCUAGCUGCGAGAAUUAAUGUGAAUUGCAGGA
CACAUUGAUCAUCGACACUUCGAACGCACUUGCGGCCCCGGGUUCCUCCCGGGGCUACGCCUGUCUGAGCGUCGCUU

0.59 0.65

4 CGACUCUUAGCGGUGGAUCACUCGGCUCGUGCGUCGAUGAAGAACGCAGCUAGCUGCGAGAAUUAAUGUGAAUUGCAGGU
UGAUCAUCGACACUUCGAACGCACUUGCGGCCCCGGGUUCCUCCCGGGGCUACGCCUGUCUGAGCGUCGCU

0.72 0.65

5 GGUUGCGGCCAUAUCUACCAGAAAGCACCGUUUCCCGUCCGAUCAACUGUAGUUAAGCUGGUAAGAGCCUGACCGAGUAG
UGUAGUGGGUGACCAUACGCGAAACUCAGGUGCUGCAAUCU

0.93 0.45

Note: the PRIseq server sets the threshold range from 0 to 1 to distinguish the positive (bindable) and negative (non-bindable) pairs. The predictions with prob-
abilities > 0.5 were considered as positive pairs.
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examined by the PRIseq web-based server [31,32] that demon-
strated the efficiency of this approach (Table 3).

5. Conclusions

RPINBASE provides a user-friendly and effective tool for researchers
to easily and quickly establish accurate and minimal datasets of pro-
teins, RNAs, and RNA-protein complexes by investigating the structures
of RNA-protein complexes. The extracted features are completely clas-
sified in the specific form of primary and secondary structures of pro-
tein and RNA sequences available in this toolbox. Users can properly
prepare datasets (raw sequences or feature vectors) in the form of
‘complex’, ‘protein’ and ‘RNA’ targets which typically contain specific
features for machine learning purposes. In this toolbox, users can also
select the negative dataset typically generated according to the family
of protein sequences based on their specific characteristics. RPINBASE
regularly updates itself from PDB, which is considered as an acceptable
source for users who need information on these complexes.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2020.02.013.
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