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1. Introduction
When you eat a chocolate, find the love of your life, smell 
a magical Bougainvillea, speak with your heart, or sadden 
with the tears of a young child, a hidden island is working 
hard: the insula (Island of Reil). The insular cortex is 
located on the lateral wall of the cerebral hemispheres 
and is fully covered by the parietal, frontal, and temporal 
opercula in the depths of the Sylvian fissure [1,2]. The 
insula is important in the processing of visceral sensory/
motor, emotional, vestibular, pain, temperature and 
language inputs, in addition to visual, auditory, tactile, 
olfactory, and gustatory information [1–5]. 

The central sulcus of the insula is anatomically 
separated into two main sections, the anterior and posterior 
lobules, based on different cytoarchitectonics (granular, 
dysgranular and agranular), connectivity and functions. 

The anterior lobule includes three short gyri (anterior, 
middle and posterior), the posterior lobule has two long 
gyri (anterior and posterior), and the insula consists of the 
ventroanterior, dorsoanterior,, and posterior subregions 
[3,4]. The ventroanterior part is related to socioemotional 
processing (mainly receiving afferents from the limbic, 
entorhinal, perirhinal and posterior orbitofrontal cortices, 
and the cingulate gyrus), and the dorsoanterior part 
is linked to cognitive processing. The posterior insula 
is involved in auditory processing and somatovisceral 
sensations (receiving a projection from the viscera, which is 
relayed in the solitary tract nucleus, parabrachial complex, 
and thalamus) [1,6,7]. The insula displays activation 
during the processing of pain, but there is no consensus on 
the localisation of the pain-related activity [7]. Pain in the 
body, such as burns, activates the posterior insula, while 
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feeling empathy for another person’s pain activates the 
anterior insula [4]. Moreover, the left and right insula have 
different functions [8]. Recent studies showed that the right 
insula was associated with the affective-perceptual form of 
empathy, olfaction, autonomic control of cardiac activity, 
self-awareness of actions, pain perception, singing, and the 
sympathetic system, while the left insula was associated 
with speaking, the parasympathetic system, and cognitive-
evaluative forms of empathy [7,9–13]. 

Several studies on sex-based volume differences 
in specific parts of the brain have been reported 
in neuroimaging studies [14–17]. A meta-analysis 
investigating sex differences in the human brain showed 
that average total brain volume is higher in males than 
in females. In addition, volume and tissue density of 
the amygdala, hippocampus and insula differ by sex. 
Regional sex differences are found in a number of areas, 
including those known to be implicated in sex-based 
neuropsychiatric conditions [18]. 

The number of studies investigating differences in 
insular volume based on sex and laterality is insufficient. 
Thus, we aimed to investigate these differences between 
sexes and hemispheres.

2. Materials and methods 
2.1. Subjects 
In this retrospective study, we analysed magnetic resonance 
images (MRI) from a total of 47 healthy participants 
(23 females and 24 males) who were scanned between 
February 2015 and December 2016 in the department of 
Radiology at Akdeniz University. The study was approved 
by the local ethics committee (Akdeniz University, 
protocol no.: 2015.02.25) and written informed consent 
was obtained from each subject, in accordance with the 
Declaration of Helsinki. Participants were students from 
the faculty of medicine. The females and males had similar 
ages (M: 20.08 ± 1.44 years, range 18–25 years, F: 19.57 

± 0.90 years, range 18–22 years). Eleven males and 9 
females were right-handed, and the rest were left-handed, 
as determined by the Edinburgh Handedness Inventory 
(Revised) [19]. Participants were excluded if they had any 
history of neurological, psychiatric or systemic disease, 
and all of them were free of any medications at the time 
of testing.
2.2. MRI acquisition
Imaging was performed using the 3T (Siemens, Spectra, 
Erlangen, Germany) MRI scanner. MRI protocol: 3D 
T1-MPRAGE TR (Repetition time)/TE (Echo time): 
1900/2.41 ms; flip angle: 9’; Matrix: 256 × 186; FOV: 250 
mm2; acquisition time: 3 min 21 s; number of axial slices: 
176; slice thickness: 1 mm.
2.2.1. Volume measurements
Intracranial cavity volume
To calculate the volumes of intracranial structures, such 
as total intracranial, cerebral, and grey and white matter 
volumes, processing was performed using volBrain (v.1.0, 
http://volbr ain.upv.es), a free online MRI brain volumetry 
system [20]. volBrain uses a fully-automated segmentation 
technique in which the algorithm is based on multi-atlas 
patch-based label fusion segmentation technology [20,21]. 
(Figure 1).

Automated insular volumetry using IBASPM
Automated segmentation of the insular volume was 

performed using IBASPM (Individual Brain Atlases 
using Statistical Parametric Mapping). We used MRIcron 
to convert scans into the NIfTI format (nii) to ensure 
compatibility with IBASPM. We used SPM8, implemented 
in MATLAB 10a (MathWorks, Natick, MA, USA), and the 
Automated Anatomical Labelling (AAL) atlas with 116 
pre-defined segmentations. This process has four steps: 
segmentation, normalisation, labelling, and atlasing [1,22] 
(Figures 2A and 2B, Figures 3–5).

We segmented volumetric MRI images into grey 
matter, white matter and cerebrospinal fluid in native 

Figure 1. Segmentation of macrostructures of brain with volBrain.
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space, normalised to the ICBM 152 T1 template Montreal 
Neurological Institute (MNI) space to obtain the spatial 
transformation matrix. We automatically labelled each 
normalised individual grey matter voxel using the AAL 
atlas created from each subject’s MRI image atlased for the 
individual, and finally, the volumes of the generated atlases 
were automatically evaluated for 116 brain regions [23,24]. 

2.3. Statistical analysis
Statistical analyses were performed using the SPSS v:20.0 
statistical package (IBM Corp., NY, USA). The normality 
of the data was tested using the Shapiro–Wilk test. The 
independent samples test was used to compare demographic 
and clinical characteristics of the male and female groups 
and differences between the groups were reported as mean 

Figure 2. Insular cortex rendering on a T1 image: (A) coronal view; and (B) axial view showing the insula (red: left; green: right).

Figure 3. Insular cortex displayed on a T1 image: axial section showing the insula (red: left; 
green: right).
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± standard deviation (mean ± SD), mean difference, and 
confidence interval (95% CI). A paired Student’s t-test was 
used to compare the left and right cerebrum measurements 
from the same subjects. For nondistributed data which were 
expressed as median (minimum–maximum), the Mann–
Whitney U test was used to compare the sexes, and the 
Wilcoxon test was used to compare the left and right sides 

of each subject’s brain [25]. A p-value ≤ 0.05 was considered 
to be statistically significant. The required sample size for the 
study was calculated using the G*Power software (G*Power, 
Version 3.1.9.4, Franz Faul, Universität Kiel, Germany). 
According to a previous study, a total sample size of 42 
subjects is required to obtain 80% power with d = 0.3930510 
effect size, α = 0.05 type I error, and β = 0.20 type II error [26].

Figure 4. Insular cortex displayed on a T1 image: sagittal section showing the insula (red: left; green: right).

Figure 5. Insular cortex displayed on a T1 image: a coronal section showing the insula (red: left; green: right).
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3. Results
The study included 47 healthy individuals (24 males and 23 
females) between the ages of 18 and 25 years. The mean ages 
of the males and females were 20.08 ± 1.44 years and 19.57 ± 
0.90 years, respectively. There was no significant difference 
in age between males and females (p > 0.05). Eleven of 
the males (45.8%) were right-handed and 13 (54.2%) were 
left-handed, whereas 9 of the females (39.1%) were right-
handed and 14 (60.9%) were left-handed. Handedness was 
statistically similar in males and females (p > 0.05) (Table 
1).

The right insular volume was significantly higher than 
the left insular volume, and the left cerebral volume was 
significantly higher than the right cerebral volume (p < 
0.05) (Table 2). The total brain, total cerebral, left and right 
insular, and left and right cerebral volumes were significantly 
larger in males than females (p < 0.001) (Table 3).

The ratio of the insular volume to total brain volume was 
1.2904 ± 0.2663 in males and 1.1601 ± 0.0754 in females; 
insular volume to total cerebral volume was 1.4794 ± 0.3039 
in males and 1.3281 ± 0.0854 in females; left insular volume 
to left cerebral volume was 1.4520 ± 0.3487 in males and 
1.2768 ± 0.1131 in females; and, right insular volume to right 
cerebral volume was 1.5069 ± 0.2618 in males and 1.3796 ± 
0.0742 in females. All of the ratio values were significantly 
higher in males than in females (p < 0.05) (Figure 6). 

4. Discussion
The main findings of the present study are as follows: (1) 
The total brain, total cerebral, total insular, and left and 
right insular and cerebral volumes were greater in male 
participants than in female participants. (2) The right 
insular volume was greater than the left insular volume, 
while the left cerebral volume was greater than the right 
cerebral volume in all participants. (3) The ratios of the 
insular volume to total brain volume and cerebral volume, 
left insular volume to left cerebral volume, and right insular 
volume to right cerebral volume were higher in male 
participants than in female participants. 

Several MRI studies on human cortical and subcortical 
development have revealed sex differences [15–17]. 
Understanding the effect of sex on brain development 

may help understand the sex differences seen in the 
development of psychopathological conditions. During 
brain development, biological and environmental factors 
result in sex differences in brain structure [27]. A meta-
analysis showed that males have higher tissue densities 
in the insular cortex, while females have greater insular 
volumes. In addition, in males, bilateral limbic areas and 
left posterior cingulate gyrus volumes are mostly greater, 
while only the left side of the limbic system has a higher 
density. Conversely, the volumes of the right hemisphere 
(related to language), right insular cortex and anterior 
cingulate gyrus are greater in females [18]. Through MRI-
based analysis, Kennedy et al. found that insular volume 
was 17.6 ± 2.1 cm3 in males and 16.9 ± 1.7 cm3 in females 
[28]. In another study, MRI-based analysis revealed a 
larger insular gyrus in males than in females. The authors 
stated that males may have a greater insular surface and/
or volume as they have a larger and heavier brain. In 
addition, according to their study, besides the larger 
insula, the gyrus pattern is larger in males [29]. Similar 
to the study by Kennedy et al., in the present study, the 
insular volume was greater in males than in females. In 
addition, our study showed for the first time that the ratios 
of the insular volume to total brain volume and cerebral 

Table 1. Demographic characteristics of participants.

Characteristics 
(n = 47) Mean ± Std. deviation

Age (years) 
F 19.57 ± 0.90
M 20.08 ± 1.44

Sex (n, %)   
F 23/48.9% 
M 24/51.1%

Handedness (n, %)
R 20/42.6%
L 27/57.4%

Total brain (GM + WM) (cm3) 1315.57 ± 121.53
Total cerebrum (cm3) 1148.27 ± 106.79

GM: grey matter, WM: white matter.

Table 2. Volume differences between sides of insula and cerebrum using ??

Characteristics 
(n = 47) Mean Std.

deviation
Mean difference
[95% CI]/z t p

Insula (cm3)
Left 7.82 1.71 –4.25 <0.001
Right 8.25 1.35

Cerebrum (cm3)
Left 575.10 53.46

0.59 [(0.72)–( 3.14)] 3.22 0.002
Right 573.17 53.40
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volume, left insular volume to left cerebral volume, and 
right insular volume to right cerebral volume were higher 
in males than in females. The participants in the present 

study and in the study by Kennedy et al. [28] were younger 
than the participants in the meta-analysis, who belonged 
to a wide age range [18]. 

Table 3. Sex differences of volumetric morphometry of total brain, total cerebrum, insula and cerebrum.

Male (N:15)
Mean ± SD

Female (N:15)
Mean ± SD Mean difference [95%CI]/u p

Total brain (GM+WM)(cm3) 1386.91 ± 78.23 1244.21 ± 115.95 142.70[(83.92) –( 201.48)] <0.001
Total cerebrum (cm3) 1209.72 ± 72.14 1086.81 ± 101.11 122.90[(70.70)–( 175.10)] <0.001

Insula (cm3) 
Left 8.68 ± 1.96 6.93 ± 0.68 52 <0.001
Right 9.02 ± 1.46 7.46 ± 0.57 44 <0.001

Cerebrum (cm3) 
Left 605.76 ± 36.77 544.44 ± 50.29 61.32[(35.14)–( 87.49)] <0.001
Right 603.96 ± 35.48 542.37 ± 50.91 61.58[(35.50)–( 87.66)] <0.001

GM: grey matter, WM: white matter.

Figure 6. Comparisons of ratio of TI/TB, TI/TC, LI/LC, RI/RC between sexes. TI: total insular volume, TB: 
total brain volume, TC: total cerebral volume, LI: left insular volume, LC: left cerebral volume, RI: right 
insular volume, RC: right cerebral volume.
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The insula makes reciprocal connections with 
the limbic system [5]. The integration of perceptual 
experiences is a critical function of the insular cortex, 
which is a part of the limbic region. Therefore, the insular 
cortex is responsible for balanced behaviour [30]. The 
anterior insular lobule is primarily responsible for higher 
cognitive and emotional tasks, rather than simple motor 
activities, while the posterior insular lobule is sensitive 
to general somatosensory, temperature and pain stimuli; 
these lobules show a distinct somatotopic organisation 
[3,7,31,32]. The anterior and posterior insular volumes 
may be different in males and females. Therefore, studies 
investigating the sex differences in anterior and posterior 
insular volumes need to be conducted. We could not 
measure the anterior and posterior insular volumes due 
to limitations of the system we used (IBASPM). Systems 
that measure the anterior and posterior insular volumes 
separately need to be developed. 

There is a functional difference between the left and 
right anterior insula. The right anterior insula is associated 
with negative emotional valence and sympathetic 
activation, while the left anterior insula is associated with 
positive emotional valence and parasympathetic function 
[1,8]. In a previous study, it was stated that the left insular 
volume was 8.8 ± 0.9 cm3 and the right insular volume 
was 8.5 ± 1.1 cm3 in young adult participants [28]. In 
another study, the mean number of right insular gyri was 
found to be 4.39, while that of left insular gyri was found 
to be 4.46 [29]. In contrast, in the present study, the right 
insular volume (7.95 ± 0.82 cm3) was found to be greater 
than the left insular volume (7.43 ± 0.96 cm3). This finding 
may be explained by the relationship between behavioural 
functions and emotional reactions and the insular 
anatomy, and by the fact that the right brain is responsible 
for expressive and creative tasks [33]. 

Diverse software tools, such as FMRIB Software 
Library (FSL) [34], FreeSurfer [35], Statistical Parametric 
Mapping (SPM) [36], MRIcroGL [1], Individual Brain 
Atlases toolbox (IBASPM; Cuban Neuroscience Center) 
[37], and volBrain [38] are available for volumetric 
measurements of brain structures. IBASPM, which was 
used in the present study, is a web-based software for the 
automatic segmentation of individual MRI images into 
different anatomical structures using a standardised atlas. 
Two studies comparing IBASPM and FreeSurfer indicated 
that the average errors in hippocampal measurements 
taken using IBASPM were lower, but more widely 
distributed than those in hippocampal measurements 
taken using FreeSurfer [23,39]. The other program we 
used was volBrain, an online MRI brain volumetry system 
that automatically obtains volumetric brain information 
from researchers’ 3D MRI data, without the need for any 
infrastructure at their local sites. Moreover, volBrain is 

fully automatic and provides volumes of the specific brain 
parts without any human interaction [20]. 

Several changes in the cortical and subcortical 
morphometry have been reported in different diseases 
using segmentation techniques. The insular cortex plays 
an important role in the development of schizophrenia, 
mood disorders, eating disorders, obsessive-compulsive 
disorder and panic disorders. The insular volume of the 
individuals with psychiatric disorders was found to be 
lower than that of the healthy individuals [1,32,33,40,41]. 
Knowledge of the normal insular volume and how this 
differs with sex and lateralisation could aid the early 
diagnosis of such disorders. Moreover, such information 
might be important in clinical examinations to help 
determine the causes of symptoms and surgical success. 
Studies of anatomical dissections, and structural and 
functional imaging analysis have led to a reduction in 
perioperative morbidity in insular surgery [42]. Together 
with multimodal imaging technology to map brain 
function, this has widened surgical possibilities enabling 
transcortical resection of insular tumours [43]. 

In conclusion, to our best knowledge, this is the first 
study that compares the ratio of insular volume to total 
brain and cerebral volume. Moreover, we are the first 
to show sex- and laterality-based differences in insular 
volume. However, the present study has some potential 
limitations. First, the anterior and posterior insula and 
grey/white matter volumes could not be measured using 
IBASPM. Different automatic segmentation programs will 
need to be used for detailed analysis of the insular volume. 
Second, the present study included younger individuals 
only; therefore, the results cannot be generalised. In future 
studies, sex differences should be investigated in different 
age groups. In addition, our findings need to be confirmed 
in a larger population. 
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