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1. Introduction
The limits and capabilities of X-ray crystallography have 
been expanded tremendously together with the availability 
of enabling X-ray technologies (Maveyraud and Mourey, 
2020). Advances in hardware and software development 
have made X-ray crystallography increasingly more 
attractive for investigating and understanding the 
structural dynamics of biomacromolecules (Srivastava 
et al., 2018). The home-source X-ray diffractometer 
(XRD) enables the determination of the high-resolution 
structures of biomacromolecules by employing single-
crystal X-ray cryocrystallography (Smyth and Martin, 
2000). The extremely intense and focused X-ray beam 
and high-quality optics offered by new generation home-
source XRDs provide a rapid analysis for the investigation 
of crystalline materials. Initial data collection and 
structure determination can be performed at cryogenic 
temperatures without dependence on time-consuming 
and costly international synchrotron and X-ray Free 
Electron Laser (XFEL) facility visits.

The main hardware components of a home-source 
XRD consist of an X-ray generator, a sample holder, 
and an X-ray detector (Figure 1a; Table 1). X-ray source 
material depending on XRD can consist of either dual 
metal targets such as; Mo/Cu, Cu/Cr, Cu/Co, Cu/Ag, and 
Ag/Mo; or only single metal Mo and Cu. The incoming 
collimated X-ray beam is scattered through a single crystal 
which involves arrays of atoms in a periodic crystalline 
lattice (Cullity and Weymouth, 1957). Diffraction data 
that originated from monochromatic X-rays by hitting the 
crystal is collected on a detector and processed through 
user-friendly software (Powell, 2017). 

Despite recent technological advancements, the 
phenomenon of X-ray scattering was first defined by 
Max von Laue, William H. Bragg, and William L. Bragg 
in the early 20th century (Brügemann and Gerndt, 2004). 
Based on Bragg’s law, X-ray diffraction is correlated with 
the characteristic crystal lattice spacing, d, with the X-ray 
wavelength, λ, and the angle between the incident and 
scattered beam, 2θ (Figures 1b and 1c). When incident 
X-rays pass through the crystal, based on the principle of 

Bragg’s law, the X-ray detector converts photon energy to 
the count rate for recording and processing X-ray signals 
(Le Pevelen, 2010). Together with the discovery of X-rays 
in 1895 and the understanding of Bragg’s law, the structural 
investigation of materials and small molecules had 
become a milestone for X-ray crystallography (Jaskolski et 
al., 2014). Single crystal studies have started to highlight 
the structural and missing properties of macromolecules, 
which are essential for fundamental biological processes of 
life (Liebschner et al., 2019; Rathore et al., 2020).

The X-ray diffraction method is very well established 
and various samples such as small molecules and 
biomacromolecules can be analyzed (Chapman, 2019; 
Maveyraud and Mourey, 2020). Nowadays, with expanding 
computational power, users can determine structures 
of macromolecules at atomic resolution using high-
throughput pipelines (Guven et al., 2021). Macromolecular 
cryocrystallography experiments were initially carried out 
at synchrotron X-ray beamlines (Hansen et al., 1990). 
With the advancement of hard XFELs, ultrafast and bright 
pulses were achieved and this enabled data collection at 
ambient temperature while allowing outrunning radiation 
damage (Chapman et al., 2011). However, limited 
access to XFEL beamtimes and synchrotrons has been a 
bottleneck for macromolecular crystallography, limiting 
the researchers’ speed of molecular characterization. 
Increasing demand for fully-automated and highly 
accurate structure determination has paved the way for 
single-crystal home-source XRDs. Easily accessible XRDs 
open up new perspectives to the researchers and home 
source XRDs speed up the whole characterization process. 
For instance, recently, fast data collection capabilities of 
home-source XRD enabled rapid ambient-temperature 
structure determination of SARS-CoV-2 main protease 
during the COVID-19 pandemic (Kneller et al., 2020). 

Here we introduce the Turkish home source XRD, the 
XtaLAB Synergy Flow system “Turkish DeLight” which 
is equipped with a four-circle kappa goniometer and a 
universal 6-axis sample handling robot system (UR3) 
allowing fully automated high-throughput structure 
determination (Figure 2). High-flux rotating anode X-ray 

Abstract: X-ray crystallography is a robust and powerful structural biology technique that provides high-resolution atomic structures 
of biomacromolecules. Scientists use this technique to unravel mechanistic and structural details of biological macromolecules (e.g., 
proteins, nucleic acids, protein complexes, protein-nucleic acid complexes, or large biological compartments). Since its inception, 
single-crystal cryocrystallography has never been performed in Türkiye due to the lack of a single-crystal X-ray diffractometer. The 
X-ray diffraction facility recently established at the University of Health Sciences, İstanbul, Türkiye will enable Turkish and international 
researchers to easily perform high-resolution structural analysis of biomacromolecules from single crystals. Here, we describe the 
technical and practical outlook of a state-of-the-art home-source X-ray, using lysozyme as a model protein. The methods and practice 
described in this article can be applied to any biological sample for structural studies. Therefore, this article will be a valuable practical 
guide from sample preparation to data analysis.

Key words: X-ray crystallography, light source, structural biology, atomic resolution, drug repurposing, drug development, structural 
dynamics
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diffractometer and HyPix-Arc 150° detector enable data 
collection from micron-sized crystals with a low detector 
background noise. The crystal structure determination 
of the chicken egg lysozyme using a home-source XRD 
is demonstrated with a step-by-step protocol (Figure 

2; Table 2; CrysAlisPro SOP). This study is a significant 
milestone in the Turkish structural biology endeavor as 
it represents the first high-resolution macromolecule 
structure determination in which all steps were performed 
in Türkiye. From crystallization to data collection and 

Figure 1. The main hardware components of the Turkish DeLight. (a) Schematic of the X-ray 
diffraction pattern. Incident X-ray beam through the X-ray tube hits the crystal on the sample 
holder and forms a diffraction pattern based on (b-c) Bragg’s law.

Table 1. Specifications of X-ray diffractometer.

Product name XtaLAB Synergy-R
Technique Single crystal X-ray diffraction
Core attributes Microfocus rotating anode X-ray source diffractometer with hybrid pixel array detector and kappa goniometer
Detector type and 
parameter

HyPix-Arc 150° (Curved photon counting detector, Hybrid Photon Counting (HPC) X-ray detector, 147 (W) 
× 93 (H) × 180 (D) (mm) , 1Ø, 100–240 V, 15 A)

X-ray source PhotonJet-R X-ray source with MicroMax™-007 rotating anode, which incorporates a new mirror design and 
new alignment hardware. Two target types are available (Mo or Cu)

Goniometer Fast kappa geometry goniometer, which allows data collection scan speeds of up to 10°/s
Accessories Oxford Cryostream 800, Oxford Cobra, XtaLAB Flow robotic system, XtalCheck-S, High Pressure Kit
Computer External PC, MS Windows® OS
Core dimensions 1300 (W) × 1875 (H) × 850 (D) (mm)
Weight 600 kg (core unit)
Power requirements 1Ø, 200–230 V, 20 A

https://docs.google.com/document/d/1LEkA-uyhFUmhgO5V-eR4t45Qmv_HVOozKfgUeuS4Eok/edit
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processing, all steps were performed without necessitating 
travel to an international synchrotron light source or an 
XFEL facility. This has significant implications following a 
COVID-19 pandemic as fast and efficient drug repurposing 
studies of SARS-CoV-2 virus were unable to be performed 
in Türkiye despite the fact that our group successfully 
obtained two crystal forms of the main protease of this 
virus (Durdagi et al., 2021). It is an exciting time for 
Turkish structural biologists that this facility will enable 
us to perform globally competitive structural biology 
research and respond to global health and scientific events 
as they occur.

 
2. Materials and methods
2.1. Protein sample preparation and crystallization
Chicken Egg Lysozyme (Calzyme Laboratories, Inc, USA) 
was prepared from lyophilized powder form by dissolving 
in distilled water at a final concentration of 30 mg/mL. The 
protein solution was filtered through 0.22-µm hydrophilic 

polyethersulfone (PES) membrane filter (Cat#SLGP033NS, 
Merck Millipore, USA) and stored as 1.0 mL aliquots at 
–80 °C until crystallization experiments. Sitting drop, 
microbatch under oil method was used for lysozyme 
crystallization (Ertem et al., 2022). 0.83 µL of 30 mg/mL 
lysozyme solution was mixed with the equal volume of 
approximately 3000 commercially available sparse matrix 
and grid screen crystallization cocktail solutions in 72-
well Terasaki crystallization plates (Cat#654180, Greiner 
Bio-One, Austria). Each well was sealed with 16.6 µL of 
paraffin oil (Cat#ZS.100510.5000, ZAG Kimya, Türkiye) 
and stored at +4 °C until crystal harvesting. Terasaki 
plates were checked under a compound light microscope 
for crystal formation and crystals were obtained within 
24 h in most of the crystallization conditions. Overall 
approximately 3000 different crystallization conditions 
were tested for lysozyme crystallization (Table S1). The 
best diffracting crystals were grown in 0.09 M HEPES-
NaOH pH 7.5, 1.26 M sodium citrate tribasic dihydrate, 

Figure 2. Comprehensive workflow from crystallization to structure determination. (a) Crystallization steps of lysozyme 
and sample delivery; lysozyme crystals are picked by using MiTeGen mounting loops and then the harvested crystals are 
frozen by plunging into the liquid nitrogen. The puck is transferred to the storage dewar. (b) Data collection is performed by 
using Rigaku’s XtaLAB Synergy Flow X-ray diffractometer. Using the automatic centering feature of the device, the lysozyme 
crystal at the tip of the MiTeGen loop is centered at the X-ray beam. (c) The crystal structure of the lysozyme is determined 
and refined using PHENIX while the model is built in COOT. All X-ray crystal structure figures are generated with PyMOL.
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10% v/v glycerol (Crystal Screen Cryo (Cat#HR2-122) 
#38, Hampton Research, USA).
2.2. Crystal sample harvesting and delivery
The obtained lysozyme crystals were harvested from the 
Terasaki crystallization plates by using MiTeGen and 
microLoops sample pins mounted to a magnetic wand 

(Garman and Owen, 2006) based on the crystal size 
(Figure 3) under compound light microscope (Figures 4a 
and 4b). The harvested crystals held by the magnetic wand 
(Figure 4c) at the tip of the mounting pin were immediately 
flash-frozen by quickly plunging them in liquid nitrogen. 
Frozen sample pins were carefully placed on the previously 
cryocooled sample puck (Cat#M-CP-111-021, Mitegen, 
USA) without removing the crystal from liquid nitrogen 
(Figure 4d). This step was repeated until the 16-pin puck 
was completely full. The loaded puck was carefully held 
using the puck wand (Figure 4e) and transferred to the 
dewar of the XRD for initial crystal screening and data 
collection (Figure 4f; please also see Crystal Picking SOP). 
After initial data collection, the remaining crystals in the 
puck were replaced back to a puck shipping cane (Cat#M-
CP-111-065, MiTeGen, USA) and transferred to a CX100 
dry liquid nitrogen dewar for long term storage (Cat#TW-
CX100, Taylor Wharton, USA).
2.3. Data collection
Data collection was performed using Rigaku’s XtaLAB 
Synergy Flow XRD that is equipped with CrysAlisPro 
1.171.42.35a software (Rigaku Oxford Diffraction, 2021). 
The sample puck dewar integrated into the device was 
prefilled and precooled to 100 °K with liquid nitrogen 
and then the prepared pucks were manually placed in 
the sample dewar with the puck wand. During the data 
collection process, to keep the crystals at low temperatures, 
Oxford Cryosystems’s Cryostream 800 Plus was adjusted 
to 100 °K and dry air was blown into the sample insertion 
part of the Intelligent Goniometer Head (IGH). Using the 
robotic auto sample changer (UR3 as known as Crystal 
Cracker), the MiTeGen sample pin with a lysozyme crystal 
was placed on top of the IGH by the help of a robotic arm 
(Figure 5a). Using the automatic centering feature of the 
CrysAlisPro, the lysozyme crystal at the tip of the pin was 
centered at the X-ray beam position. The PhotonJet-R 
X-ray generator with Cu X-ray source was operated 
at 40 kV and 30 mA, and the beam intensity was set to 
10% to minimize the cross-fire and overlap of the Bragg 
reflections. Two screening shots were collected with a 2 Å 
resolution limit set at a 60 mm detector distance, 0.2-degree 
scan width and 1 s exposure time; a total of 4 frames were 
taken (Figure 5b). After initial processing, a strategy was 
created as 1 Å resolution limit, 47 mm detector distance, 
0.2-degree scan width, and 1 s exposure time to achieve 
full data completeness and at least redundancy of 3, with 
the information obtained from the initial preprocessing 
of screening images (Figure 5c). A total of 18,200 frames 
were collected within 54 min of total data collection time 
and further used to generate experimental electron density 
maps extending beyond 1.7 Å.
2.4. Data processing
When the strategy parameters were optimized considering 
the best diffraction frame (Resolution: 1 Å; Detector 

Table 2. Data collection and refinement statistics of lysozyme 
data collection and structure refinement.

Dataset Lysozyme
PDB ID 7Y6A
Data collection
Beamline Turkish DeLight Source
Space group P 43 21 2
Cell dimensions
a, b, c (Å) 77.35, 77.35, 38.8
α, β, γ (°) 90.00, 90.00, 90.00
Resolution (Å) 24.46–1.50 (1.78–1.50)
CC1/2 1.000 (0.92)
CC* 1.000 (0.97)

Rmerge 0.048 (0.44)

Rmeas 0.048 (0.46)

I / σI 15 (9.8)
Completeness (%) 98.86 (95.99)
Redundancy 21
Refinement
Resolution (Å) 24.46–1.50 (1.61–1.50)
No. reflections 19182 (1817)

Rwork / Rfree 0.22/0.25 (0.22/0.25)

No. atoms
Protein 1006
Water 134
B-factors
Protein 17.79
Water 27.81
Coordinate errors 0.17
R.m.s deviations
Bond lengths (Å) 0.005
Bond angles (°) 0.720
Ramachandran plot
Favored (%) 120 (99.17%)
Allowed (%) 1 (0.83%)
Disallowed (%) 0.00 (0.00%)

1One crystal was used for each dataset. 
2The highest resolution shell is shown in parenthesis.

https://docs.google.com/document/d/1IDzW37JzQRRZVbT8jye9oKTTqbpQb7wZOqvK10tLb64/edit
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distance: 47 mm), and after performing the data collection 
considering this new strategy, automatic data reduction was 
started by using the default parameters of the CrysAlisPro 
suite. Moreover, apart from a complete data reduction 
process in the offline mode, automatic data reduction can 
be started after batches of 25 frames and updated every 
25 frames in the online mode (Figure 5c). The output 
file is mainly characterized by the *.rrpprof that includes 
both unmerged and unscaled files. Once data reduction 
is completed, *.rrpprof file is converted to the *.mtz file 
using the *.hkl file. In this step, “CCP4 *.mtz format” can 
be retrieved through the protein crystallography (PX) 
window once the CCP4 package (Winn et al., 2011) is 
installed. After the data processing is completed, the “Data 
Reduction” tab in the CrysAlisPro main window provides 
information on data processing and scaling statistics 
(Table 2). The data is refinalized through the “Refinalize/
Finalize” button by allowing for the removal of outliers, the 

rescaling of frames, and modification of the space group. 
After determining the export options, the processed data 
are exported to two *.mtz formats (Figure 5d) that can be 
used by all PX suites, especially CCP4 (Winn et al., 2011) 
and Phenix (Adams et al., 2010). 
2.5. Structure determination
We determined the crystal structure of lysozyme at 
cryogenic temperature (100 °K) in space group P43212 
by using the automated molecular replacement program 
PHASER (McCoy et al., 2007) implemented in PHENIX 
(Adams et al., 2010) with the previously published X-ray 
structure at cryogenic temperature as a search model 
(Pechkova et al., 2010; PDB ID: 3IJV). Coordinates of 
the 3IJV were used for the initial rigid-body refinement 
with the PHENIX software package. After simulated-
annealing refinement, individual coordinates and 
Translation/Libration/Screw (TLS) parameters were 
refined. Additionally, we performed composite omit 

Figure 3. Mounting pins with various mount loops used for crystal delivery. (a-h) Different sizes of pins are 
used based on the crystal size during harvesting.
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map refinement implemented in PHENIX to identify 
potential positions of altered side chains, and water 
molecules were checked in COOT (Emsley and Cowtan, 
2004), and positions with strong difference density were 
retained. Water molecules located outside of significant 
electron density were manually removed. All X-ray crystal 
structure figures were generated with PyMOL and COOT 
(Schrödinger, LLC). 

3. Results
3.1. 1.7 Å resolution lysozyme structure determined at 
Turkish Light Source
We used lysozyme as a model protein to demonstrate 
a reproducible X-ray data collection from the Turkish 

DeLight Source and we determined the crystal structure of 
lysozyme to 1.7 Å resolution at the cryogenic temperature 
by employing Turkish DeLight (Figure 6; Figure 7). The 
lysozyme structure solved here was aligned to the lysozyme 
structure (PDB: 3IJV) with an RMSD of 0.44 Å (Figure 
8). The Ramachandran statistics that were calculated by 
using PHENIX for the lysozyme structure (most favored/
additionally allowed/disallowed) are 99.17%/0.83%/0.00%, 
respectively. The experimentally determined electron 
density reveals all details within the structure including 
side chains and water molecules. This well-defined 
superior electron density map indicates the quality of our 
data and the small conformational changes were observed 
as a result of superposition with 3IJV structure.

Figure 4. Workflow for sample delivery. (a) The loop and cryotongs are attached to each other correctly. (b) 
The Terasaki crystallization plate is placed under the compound light microscope and the crystal is located 
by shifting the plate under the lens. (c) The crystal to be collected is picked up with the magnetic tip of the 
cryopin. (d) The picked crystal at the tip of the mounting pin is instantly frozen by immersing it in liquid 
nitrogen, and the pin is inserted into the precooled sample puck in liquid nitrogen. (e) Once the crystal 
freezing is finished, the puck is held by the puck wand. (f) The puck is placed in the dewar of XRD for data 
collection.
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Figure 5. XRD software CrysAlisPro workflow. (a) Sample mounting. In the control menu of the sample mounting robot, the pin to be 
placed on the intelligent goniometer head (IGH) is selected. (b) Screening shot. Two screening shots with 90° angles provide general 
information about the crystal by setting the required parameters. (c) Experiment strategy and data reduction. The necessary parameters 
are entered, and the data collection strategy is prepared and executed. After the data is collected, an *.hkl file is generated with automated 
data reduction. (d) Molecular replacement. The *.mtz file is created over the *.hkl file. With the *.mtz file and the template structure PDB: 
3IJV, molecular replacement and refinement are performed using PHENIX, and the model is built with COOT.
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3.2. Fully automated data collection and processing
Once picking the best lysozyme crystal based on parameters 
such as sharp crystal faces, regular shape, and clear rather 
than opaque, it was flash-frozen in liquid nitrogen. Various 
crystals were picked and placed until the puck was full 
and transferred to the dewar of the XRD for the further 
data collection process (Figure 5; please also see Crystal 
Picking SOP). CrysAlisPro offers two different programs: 

one version is online and supports all data collection and 
reduction processes; while the other version supports 
only the data reduction process. Before starting the data 
collection, the CrysAlisPro software should be run with 
parameters optimized for each experiment before placing 
the pucks into the dewar. Our study was performed by 
starting the program with a standard beamstop and IGH, 
permitting the robot control. We ensured that the relative 

Figure 6. Crystal structure of lysozyme. (a) 2Fo-Fc simulated annealing-omit map is colored in blue and 
shown at 1.0 σ level. (b) The crystal structure of lysozyme is shown in stick representation and colored in 
slate.

Figure 7. The amino acid sequence of chicken egg lysozyme structure determined by Turkish DeLight. The cartoon representation of 
lysozyme is indicated with secondary structures based on color code, respectively. (Lys: Chicken Egg Lysozyme, PDB: 7Y6A).

https://docs.google.com/document/d/1IDzW37JzQRRZVbT8jye9oKTTqbpQb7wZOqvK10tLb64/edit
https://docs.google.com/document/d/1IDzW37JzQRRZVbT8jye9oKTTqbpQb7wZOqvK10tLb64/edit


ATALAY et al. / Turk J Biol

10

humidity value for the detector was below 10% and that 
temperature, voltage, and current IGH parameters were 
set to 100 °K, 40 kV, and 30 mA through the “CRYO’’ and 
“XRAY” buttons, respectively. Robot control was selected 
by clicking the “Robotic” button and all processes were 
performed via the 6-axis UR3 Universal Robot. Once 
the dewar was filled with liquid nitrogen, all pucks were 
replaced into the dewar. The inventory zone was adjusted 
according to the locations of the pucks in the dewar; 
thus, the crystals were mounted using the autocentered 
command of the program via robot action (Figure 5a). 
Once the autocentering of a crystal was completed and the 
relevant parameters were adjusted, screening diffraction 
was started (Figure 5b). Accordingly, parameters for the 
beginning of the screen were set as two scans with a 2.0 
Å resolution, 0.2-degree scan width, and 0.5 exposure 
time (Figure 5c). Based on the screening, actual data 
collection was performed for 54 min, establishing the “Go 
to Strategy” and “Calculate New Strategies” parameters, 
suggesting that the best detector distance is 45 mm and an 
IUCr limit of 98.5% (Figure 5c). A fully automated space 
group determination option allows the selection of the best 
space groups in the Laue Groups. Following the automated 
data processing, the entire process is finalized by exporting 
the data as an .mtz file (Figure 5d). Automated molecular 
replacement was then performed using the PHASER 
implemented in PHENIX program package (Figure 5; also 
see CrysAlisPro SOP)
3.3. XtaLAB Synergy Flow system
Turkish DeLight XRD system, configured with XtaLAB 
Synergy-R, contains high-performance X-ray sources, 

direct X-ray detection detectors, and 6-axis UR3 Universal 
Robot that provides the fully and semiautomated 
data collection and standardized workflow, providing 
automated sample mounting/centering, and eliminating 
potential contamination of the diffractometer. The 
system is controlled by CrysAlisPro software for further 
operations, including sample mounting, queuing, and 
sorting. Additionally, the HyPix-Arc 150° X-ray detector 
has Hybrid Photon Counting (HPC) features with a frame 
rate of 70 Hz. Furthermore, with its 150° curve and high 
2θ range, it provides the opportunity to collect data with 
“Zero Dead Time” without losing any data, and it also 
guarantees that one can reach high resolutions with its 
100-micron pixel size.
3.4. CrysAlisPro is a very user friendly X-ray data 
processing suite
CrysAlisPro software provides user-friendly data collection 
and processing for PX, with an easy-to-use GUI to be 
operated with manual, fully automated, and semiautomated 
control. Crystal screening and data reduction can be 
performed in parallel with fully automated data collection, 
providing instant experiment feedback using a single 
integrated package. Unit cells that appear within one or 
two frames can be investigated over an automated local 
database or CellCheckCSD module during the processing. 
Similar to the Ewald3D tool (3-dimensional diffraction 
viewer), various tools are available to help the user in 
identifying and solving problems. In addition, CrysAlisPro 
provides the PX workflows and facilitates remote control 
of both scientific and technical needs.

Figure 8. Superposition of the lysozyme structure determined by the data 
collected at Turkish Light Source (light blue, PDB: 7Y6A) and the model 
lysozyme structure (gray, PDB: 3IJV).

https://docs.google.com/document/d/1LEkA-uyhFUmhgO5V-eR4t45Qmv_HVOozKfgUeuS4Eok/edit
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4. Discussion and conclusion
Many research groups often use their own home source 
before using synchrotron beamlines to screen and 
characterize their crystals for getting preliminary data and 
testing some ligand-binding studies. Therefore, there is a 
demand for easy-to-use and efficient XRD infrastructures 
in which optimum crystal data collection and processing 
procedures can be performed. These XRD infrastructures 
should be able to collect high quality and complete dataset 
by selecting the best crystals for structure determination 
of macromolecules or ligands. In addition, access and 
usage of the infrastructure for teaching purposes is also 
important (Skarzynski, 2013). In this sense, Turkish 
DeLight offers practical advantages to collect rapid and 
high-quality data in a matter of seconds. Although Turkish 
DeLight provides us high-resolution crystal structures, 
cryogenic temperature data collection can result in 
structural deformations within the protein. In the near 
future, we plan on resolving this by creating options for 
ambient temperature data collection at Turkish DeLight. 

Lysozyme is one of the first enzymes whose structure 
was determined and best characterized by the X-ray 
diffraction method. Moreover, lysozyme is widely used in 
X-ray analysis, unlike other proteins since lysozyme is easy 
to crystallize and purify from egg white (Sader et al., 2009). 
We determined the first crystal structure of lysozyme 
using fully automated data collection and processing via 
CrysAlisPro to create a modern single-crystal XRD pipeline 
for further analyzing crystals optimizing the PX module 
over the XtaLAB Synergy-R (Rigaku Oxford Diffraction).

Turkish DeLight XRD system is characterized by high-
performance X-ray sources, high-throughput HPC X-ray 
detectors that could be adapted to collect total scattering 
data and a 6-axis UR3 Universal Robot that provides the 
fully and semiautomated data collection. On the other 
hand, CrysAlisPro is a 64-bit compatible user-inspired 
data collection and processing software with an easy-
to-use graphical user interface, which is adaptable for 
modification and optimization of any PX techniques. 
Large detectors with high pixel count, more commonly 
found in synchrotrons, require substantial amounts 
of memory. Switching to 64-bit with software such as 
CrysAlisPro provides access to more memory and enables 
easy handling of substantial image sizes and datasets. 
Additionally, new data image format called Esperanto 
made available at the third-generation synchrotron facility 
(PETRA III, DESY) is an example of adaptive layouts 
powered by CrysAlisPro for data collecting, processing, 

and analyzing single-crystal datasets at room temperature 
(Rothkirch et al., 2013). Likewise, Esperanto was also 
made available for the new diffractometer implemented in 
a high-resolution inelastic X-ray scattering spectrometer 
on beamline ID28 at the European Synchrotron Radiation 
Facility (ESRF) (Girard et al., 2019).

Collectively, this study aims to introduce the first state-
of-the-art PX home source XRD in Türkiye. The lysozyme 
structure determined in this study matches perfectly with 
the published lysozyme structure (PDB: 3IJV) (RMSD: 
0.44 Å), demonstrating that the Turkish DeLight offers a 
high-quality data collection concisely, and presents the 
user-friendly and easily accessible standard operating 
procedure (see Crystal Picking SOP; CrysAlisPro SOP) for 
those who want to collect diffraction data. The future is 
ultrabright for the next generation of crystallographers in 
Türkiye. 
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Table S1. Crystallization conditions used for sitting drop, microbatch (under-oil) crystal screening.

Hampton Research
Natrix (HR2-116) #1-48 Natrix 2 (HR2-117) #1-48 Index (HR2-144) #1-96
MembFac (HR2-114) #1-48 PEG/Ion Screen (HR2-126) #1-48 PEG/Ion 2 Screen (HR2-098) #1-48
SaltRx 1 (HR2-107) #1-48 SaltRx 2 (HR2-109) #1-48 Quik Screen (HR2-221) #1-24
Ionic Liquid Screen (HR2-214) #1-24 Crystal Screen Cryo (HR2-122) #1-50 Crystal Screen 2 Cryo (HR2-121) #1-48
Crystal Screen (HR2-110) #1-50 Crystal Screen 2 (HR2-112) #1-48 Crystal Screen Lite (HR2-128) #1-50
PEGRx 1 (HR2-082) #1-48 PEGRx 2 (HR2-084) #1-48 Grid Screen PEG 6000 (HR2-213) #1-24
Grid Screen Sodium Chloride (HR2-219) 
#1-24

Grid Screen Sodium Malonate (HR2-247) 
#1-24

Grid Screen Ammonium Sulfate (HR2-
211) #1-24

Grid Screen MPD (HR2-215) #1-24 Grid Screen PEG/LiCl (HR2-217) #1-24
Molecular Dimensions
Wizard Classic 1 (MD15-W1-T) #1-48 Wizard Classic 2 (MD15-W2-T) #1-48 Wizard Classic 3 (MD15-W3-T) #1-48
Wizard Classic 4 (MD15-W4-T) #1-48 JCSG-plus™ (MD1-37) #1-96 HELIX™ (MD1-68) #1-96
MIDASplus™ (MD1-106) #1-96 NR-LBD™ (MD1-24) #1-48 NR-LBD™ Extension (MD1-26) #1-48
ProPlex™ (MD1-38) #1-96 The PGA Screen™ (MD1-50) #1-96 Morpheus® (MD1-46) #1-96
Structure Screen 1 (MD1-01) #1-50 Structure Screen 2 (MD1-02) #1-50 PACT premier™ (MD1-29) #1-96
Stura FootPrint Screen (MD1-20) #1-48 MultiXtal (MD1-65) #1-48 MacroSol™ (MD1-22) #1-48
3D Structure Screen (MD1-13) #1-48 Wizard Cryo 1 (MD15-C1-T) #1-48 Wizard Cryo 2 (MD15-C2-T) #1-48
Clear Strategy™ Screen I (MD1-14) #1-245 at 
different pHs 4.5, 5.5, 6.5, 7.5, 8.5

Clear Strategy™ Screen II (MD1-15) #1-245 
at different pHs 4.5, 5.5, 6.5, 7.5, 8.5

Wizard Precipitant Synergy Screen 
(MD15-PS-T) #1-192

Jena Bioscience
JBScreen Nuc-Pro 1 (CS-181) #1-24 JBScreen Nuc-Pro 2 (CS-182) #1-24 JBScreen Nuc-Pro 3 (CS-183) #1-24
JBScreen Nuc-Pro 4 (CS-184) #1-24
NeXtal Biotechnologies
NeXtal Protein Complex Suite (130715) #1-96
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