Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇevik, Taneren_US
dc.contributor.authorÇevik, Nazifeen_US
dc.date.accessioned2019-10-29T17:48:37Z
dc.date.available2019-10-29T17:48:37Z
dc.date.issued2019
dc.identifier.issn1380-7501
dc.identifier.urihttps://dx.doi.org/10.1007/s11042-019-07816-6
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1883
dc.descriptionÇevik, Nazife (Arel Author)en_US
dc.description.abstractThis paper proposes a novel rotation-invariant multi-spectral facial recognition approach (RIMFRA) by using orthogonal polynomials. In the first step, a rotation, illumination and noise invariant local descriptor (RinLd) is proposed to represent the texture patterns of a face image. Color channels of the images embodies non-trivial information about the characteristic of the image. Hence, the local descriptor matrices are extracted among the color channels. The corresponding new descriptor matrices for the red, green and blue channels of the image are extracted. Afterwards, co-occurrence matrices are obtained from the six combinations of the corresponding color channel descriptor matrices, that are red-red, blue-blue, green-green, red-blue, green-blue and red-green. Finally, these matrices are decomposed by using the orthogonal polynomials to achieve a more reliable and characteristic pattern extraction. The coefficients obtained as a result of the decomposition process are used as the ultimate features for the classification of the images. Extensive simulations are conducted over benchmark datasets. As presented by the simulation results, the ultimate features yield very high discriminating performance as well as providing resistance to rotation and illumination variations. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoengen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.identifier.doi10.1007/s11042-019-07816-6en_US
dc.identifier.doi10.1007/s11042-019-07816-6
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFacial Recognitionen_US
dc.subjectMulti-Spectralen_US
dc.subjectOrthogonal Polynomialen_US
dc.subjectRotation Invarianten_US
dc.titleRIMFRA: Rotation-invariant multi-spectral facial recognition approach by using orthogonal polynomialsen_US
dc.typearticleen_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume78en_US
dc.identifier.issue18en_US
dc.identifier.startpage26537en_US
dc.identifier.endpage26567en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.department-tempCevik, T., Department of Software Engineering, Istanbul Aydin University, Istanbul, Turkey; Cevik, N., Department of Computer Engineering, Istanbul Arel University, Istanbul, Turkeyen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster