Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDemirer, R.M.en_US
dc.contributor.authorDemirer, Oyaen_US
dc.date.accessioned2019-10-29T17:48:39Z
dc.date.available2019-10-29T17:48:39Z
dc.date.issued2019
dc.identifier.isbn9781728110134
dc.identifier.urihttps://dx.doi.org/10.1109/EBBT.2019.8741834
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1895
dc.description2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019 -- 24 April 2019 through 26 April 2019 --en_US
dc.descriptionDemirer, Oya (Arel Author)en_US
dc.description.abstractSepsis is a major cause of death in the world. World Health Organization estimates 30 million people developing sepsis and 6 million people die from sepsis each year; an estimated 4.2 million newborns and children are affected. The mortality rate is highest in septic shock in poor and developing countries. Early prediction of sepsis is critical for improving sepsis outcomes. The late prediction of sepsis in non-sepsis patients is a challenging problem. The aim of this study is to develop an artificial intelligence-based early warning and therapeutic decision support system which reduces sepsis-associated hospital mortality. We propose two compatible Boolean switchable Partially Observable Markov Decision Processes (POMDP) under a general risk-sensitive optimization criterion with finite time horizon. It is based on Spectral analysis of unevenly sampled (missing) observations with Demographics, Vital Signs, and Laboratory values for the patient. The policy is a common mixture of sepsis and non-sepsis beliefs on own utility functions which favors to achieve Pareto Optimality from this high dimensional belief space. © 2019 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019en_US
dc.identifier.doi10.1109/EBBT.2019.8741834en_US
dc.identifier.doi10.1109/EBBT.2019.8741834
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectDecision Supporten_US
dc.subjectDeep Learningen_US
dc.subjectLomb-Scargle Periyodogramen_US
dc.subjectPOMDPen_US
dc.subjectSepsisen_US
dc.titleEarly prediction of sepsis from clinical data using artificial intelligenceen_US
dc.typeconferenceObjecten_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.department-tempDemirer, R.M., Industrial Engineering Department, Uskudar University, Istanbul, Turkey; Demirer, O., Electrical-Electronic Engineering Department, Arel University, Istanbul, Turkeyen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster