Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGürhanlı, Ahmeten_US
dc.contributor.authorÇevik, Taneren_US
dc.contributor.authorÇevik, Nazifeen_US
dc.date.accessioned2019-10-29T17:48:40Z
dc.date.available2019-10-29T17:48:40Z
dc.date.issued2019
dc.identifier.isbn9783030166809
dc.identifier.issn2194-5357
dc.identifier.urihttps://dx.doi.org/10.1007/978-3-030-16681-6_2
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1906
dc.description9th International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2018 and 7th World Congress on Information and Communication Technologies, WICT 2018 -- 17 December 2018 through 19 December 2018 --en_US
dc.description.abstractMultilayer neural networks using supervised training try to minimize the error between a given correct answer and the ones produced by the network. The weights in the neural network are adjusted at each iteration and after adequate epochs, adjusted weights give results close to correct answers. Besides the current error, accumulated errors from past iterations are also used for updating weights. This resembles the integral action in control theory, but the method took the name momentums in machine learning. Control theory uses one more technique for achieving faster tracking: the derivative action. In this research, we added the missing derivative action to the training algorithm and obtained promising results. The training algorithm with derivative action achieved 3.8 times speedup comparing to the momentum method. © 2019, Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofAdvances in Intelligent Systems and Computingen_US
dc.identifier.doi10.1007/978-3-030-16681-6_2en_US
dc.identifier.doi10.1007/978-3-030-16681-6_2
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectNeural networksen_US
dc.subjectPID controllersen_US
dc.titleEffect of derivative action on back-propagation algorithmsen_US
dc.typeconferenceObjecten_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume939en_US
dc.identifier.startpage13en_US
dc.identifier.endpage19en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.department-tempGürhanlı, A., Department of Computer Engineering, İstanbul Aydın University, İnönü Cad. 38, Sefaköy Küçükçekmece, Istanbul, 34295, Turkey; Çevik, T., Department of Software Engineering, İstanbul Aydın University, İnönü Cad. 38, Sefaköy Küçükçekmece, Istanbul, 34295, Turkey; Çevik, N., Department of Computer Engineering, İstanbul Arel University, Türkoba Mahallesi, Erguvan Sokak No: 26/K, Tepekent – Büyükçekmece, Istanbul, 34537, Turkeyen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster