Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorPalabaş, Tuğbaen_US
dc.contributor.authorEroğlu, Kübraen_US
dc.date.accessioned2019-10-29T17:48:42Z
dc.date.available2019-10-29T17:48:42Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404198
dc.identifier.urihttps://hdl.handle.net/20.500.12294/1924
dc.descriptionEroğlu, Kübra (Arel Author)en_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 --en_US
dc.description.abstractOrder to save energy and to use energy resources efficiently, automatic occupancy determination based on sensor information is performed and energy is adjusted according to the demand in a closed area. In this study is used records consisting of T (temperature), H (humidity), L (light level), CO2 (carbon dioxide) and R (humidity ratio) sensor data. Occupancy analysis based on sensor data has been performed with REPTree (Reduced Error Pruning tree), NB (Naive Bayes), SVM (Support Vector Machine) and KNN (K Nearest Neighbor) classification algorithms. The highest classification success (97.98%) was obtained with the REPTree classification algorithm. Then the importance of the attributes is determined by the CFS (Correlation-based Feature Selection) algorithm to be taken into account in reducing costs in the data collection step and the effect of the attributes on the classification performance is examined. Finally, ensemble algorithms Adaboost, Bagging, RandomSubSpace are used to increase classification success and achieve more stable results. The performance evaluation criteria are shown that the ensemble algorithms improve the classification success. The highest classification success (98.28%) was obtained by using the Adaboost community algorithm together with the ADTree classifier. According to the sensor values in the dataset, the use of office room was determined with high success rate. © 2018 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.identifier.doi10.1109/SIU.2018.8404198en_US
dc.identifier.doi10.1109/SIU.2018.8404198
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADTreeen_US
dc.subjectCFSen_US
dc.subjectClassificationen_US
dc.subjectOccupancyen_US
dc.subjectRandomSubSpaceen_US
dc.titleOccupancy detection from temperature, humidity, light, CO2 and humidity ratio measurements using machine learning techniquesen_US
dc.title.alternativeMakine Öğrenmesi Teknikleri ile Sıcaklık, Nem, Aydınlık Seviyesi, CO2 ve Nem Oranı Ölçümlerinden Varlık Tespitien_US
dc.typeconferenceObjecten_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.department-tempPalabas, T., Biyomedikal Muhendisli?i, Bulent Ecevit Universitesi, Zonguldak, Turkey; Eroglu, K., Elektrik Elektronik Muhendisli?i, Istanbul Arel Universitesi, Istanbul, Turkeyen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster