dc.contributor.author | Gürkanlı, Ahmet Turan | en_US |
dc.contributor.editor | Mityushev, Vladimir V. | |
dc.contributor.editor | Ruzhansky, Michael V. | |
dc.date.accessioned | 2016-03-14T14:47:23Z | |
dc.date.available | 2016-03-14T14:47:23Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Gürkanlı, A.T. (2015). The Amalgam spaces W(Lp(x),{pn} ) and boundedness of hardy–littlewood maximal operators. Current Trends in Analysis and Its Applications, Trends in Mathematics. Part III, 145-161. | en_US |
dc.identifier.isbn | 978-3-319-12577-0 | |
dc.identifier.isbn | 978-3-319-12576-3 | |
dc.identifier.issn | 2297-0215 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12294/214 | |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-319-12577-0_19 | |
dc.description.abstract | Let Lq(x)(R)Lq(x)(R) be variable exponent Lebesgue space and l{qn}l{qn} be discrete analog of this space. In this work we define the amalgam spaces W(L p(x),L q(x)) and W(Lp(x),l{qn})W(Lp(x),l{qn}), and discuss some basic properties of these spaces. Since the global components Lq(x)(R)Lq(x)(R) and l{qn}l{qn} are not translation invariant, these spaces are not a Wiener amalgam space. But we show that there are similar properties of these spaces to the Wiener amalgam spaces. We also show that there is a variable exponent q(x) such that the sequence space l{qn}l{qn} is the discrete space of Lq(x)(R)Lq(x)(R). By using this result we prove that W(Lp(x),l{pn})=Lp(x)(R)W(Lp(x),l{pn})=Lp(x)(R). We also study the frame expansion in Lp(x)(R)Lp(x)(R). At the end of this work we prove that the Hardy–Littlewood maximal operator from W(Ls(x),l{tn})W(Ls(x),l{tn}) into W(Lu(x),l{vn})W(Lu(x),l{vn}) is bounded under some assumptions. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Current Trends in Analysis and Its Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Amalgam Space | en_US |
dc.subject | Variable Exponent Lebesgue Space | en_US |
dc.subject | Hardy | en_US |
dc.subject | Littlewood Maximal Operator | en_US |
dc.title | The Amalgam spaces W(Lp(x),{pn} ) and boundedness of hardy–littlewood maximal operators | en_US |
dc.type | article | en_US |
dc.department | İstanbul Arel Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü | en_US |
dc.authorid | TR3402 | en_US |
dc.identifier.volume | Part III | en_US |
dc.identifier.startpage | 145 | en_US |
dc.identifier.endpage | 161 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.institutionauthor | Gürkanlı, Ahmet Turan | en_US |