Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKarateke, Sedaen_US
dc.contributor.authorZontul, Metinen_US
dc.contributor.authorBozkurt, Nagihan E.en_US
dc.contributor.authorAslan, Zaferen_US
dc.date.accessioned2021-07-01T09:18:17Z
dc.date.available2021-07-01T09:18:17Z
dc.date.issued2021en_US
dc.identifier.citationKarateke, S., Zontul, M., Bozkurt, N. E., & Aslan, Z. (2021). Wavelet-ANFIS hybrid model for MODIS NDVI prediction. JOURNAL OF APPLIED REMOTE SENSING, 15(2). https://doi.org/10.1117/1.JRS.15.024519en_US
dc.identifier.issn1931-3195
dc.identifier.urihttps://doi.org/10.1117/1.JRS.15.024519
dc.identifier.urihttps://hdl.handle.net/20.500.12294/2764
dc.description#nofulltext#en_US
dc.description.abstractUrbanization at the expense of the natural environment has been increasing in Turkey in recent years. The toll it takes on the ecosystem has an adverse impact on local weather systems and natural resources. These rapid ecosystem changes are mostly observed in the western parts of Turkey. For a reliable prediction of sustainable development planning, the normalized difference vegetation index (NDVI) can be used as the main index for the description of both urbanization and land class. This study proposes the optimum adaptive neural-fuzzy inference systems (ANFIS) and hybrid Wavelet-ANFIS (WANFIS) models to estimate NDVI variation for certain seasonal (summer and winter) data in a grid area of 20 x 20 km(2) centered at the Kandilli region of Istanbul, Turkey (28 degrees 57' 53 '' E and 41 degrees 01' 07 '' N). The calculated NDVI values were obtained using the WANFIS model and compared with the Moderate Resolution Imaging Spectroradiometer Observations. The results reveal that the mean absolute percentage error of NDVI values are calculated as 1.5% and 0.7% for the winter and summer test datasets, respectively. The coefficient of determination (R-2) values of the winter and summer test datasets are 0.977 and 0.991, respectively. Further, when compared with ANFIS, the results demonstrate that the WANFIS model exhibits a better approximation for the estimation of NDVI variation in the summer than in the winter. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.language.isoengen_US
dc.publisherSpie-Soc Photo-Optical Instrumentation Engineersen_US
dc.relation.ispartofJournal of Applied Remote Sensingen_US
dc.identifier.doi10.1117/1.JRS.15.024519en_US
dc.identifier.doi10.1117/1.JRS.15.024519
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive Neural-fuzzy Inference Systemsen_US
dc.subjectWavelet-adaptive Neural-fuzzy Inference Systems Modelingen_US
dc.subjectModerate Resolution Imaging Spectroradiometeren_US
dc.subjectNormalized Difference Vegetation Indexen_US
dc.subjectUrbanizationen_US
dc.subjectVegetation Indexen_US
dc.subjectTime Seriesen_US
dc.titleWavelet-ANFIS hybrid model for MODIS NDVI predictionen_US
dc.typearticleen_US
dc.departmentFen-Edebiyat Fakültesi, Matematik-Bilgisayar Bölümüen_US
dc.authorid0000-0003-1219-0115en_US
dc.authorid0000-0002-7557-2981en_US
dc.identifier.volume15en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster