Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKulak, Öznuren_US
dc.contributor.authorGürkanlı, A. Turanen_US
dc.date.accessioned2021-10-08T07:30:28Z
dc.date.available2021-10-08T07:30:28Z
dc.date.issued2021en_US
dc.identifier.citationKulak, Ö., & Gürkanlı, A. T. (2020). Bilinear Multipliers of Small Lebesgue spaces. arXiv preprint arXiv:2006.15716.en_US
dc.identifier.urihttps://doi.org/10.3906/mat-2101-94
dc.identifier.urihttps://hdl.handle.net/20.500.12294/2867
dc.description.abstractLet G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers.en_US
dc.language.isoengen_US
dc.publisherScientific Technical Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Mathematicsen_US
dc.identifier.doi10.3906/mat-2101-94en_US
dc.identifier.doi10.3906/mat-2101-94
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectBilinear Multipliersen_US
dc.subjectGrand Lebesgue Spacesen_US
dc.subjectSmall Lebesgue Spacesen_US
dc.titleBilinear Multipliers of Small Lebesgue Spacesen_US
dc.typearticleen_US
dc.departmentFen-Edebiyat Fakültesi, Matematik-Bilgisayar Bölümüen_US
dc.authorid0000-0001-7572-9152en_US
dc.identifier.startpage1en_US
dc.identifier.endpage26en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/closedAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/closedAccess