Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAltintig, Esra
dc.contributor.authorSarici, Birsen
dc.contributor.authorKaratas, Sukru
dc.date.accessioned2022-11-22T08:22:57Z
dc.date.available2022-11-22T08:22:57Z
dc.date.issued2022en_US
dc.identifier.citationFeng, J., Liu, R., Chen, P., Yuan, S., Zhao, D., Zhang, J., & Zheng, Z. (2015). Degradation of aqueous 3, 4-dichloroaniline by a novel dielectric barrier discharge plasma reactor. Environmental Science and Pollution Research, 22(6), 4447-4459.en_US
dc.identifier.issn0944-1344
dc.identifier.urihttps://doi.org/10.1007/s11356-022-23004-w
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3056
dc.description.abstractIn this research, prepared activated carbon by H3PO4 from hazelnut shells was coated with silver ions for the preparation of nanoparticles which were mixed in two ratios (1:0.5 and 1:1) by using of chemical reduction method. The adsorption capacity of activated carbons has been proven by BET and iodine number. Then, the antimicrobial effect of nanoparticles on the Staphylococcus aureus and Escherichia coli was investigated; in addition to that, the characterization of hazelnut shell and silver-coated activated carbons was determined by Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) methods. The optimum condition of activated carbon from hazelnut shells indicated that 66.01% carbon content within 36.22% efficiency, while BET surface area achieved as 1208 m2/g and its contained 0.6104 cm3 g−1 total pore volume. The microbial effect indicated that 105 CFU/mL of E. coli was completely inhibited in 30 min. Silver-coated activated carbon showed excellent bacteriostatic activity against E. coli and S. aureus. The results show that the composite has good prospects for applications in drinking water. E. coli of 104 CFU/mL in drinking water were destroyed within 25 min of contact with the filter made with AgAC. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofEnvironmental Science and Pollution Researchen_US
dc.identifier.doi10.1007/s11356-022-23004-wen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectActivated Carbonen_US
dc.subjectAntibacterial Effecten_US
dc.subjectCharacterizationen_US
dc.subjectChemical Activationen_US
dc.subjectHazelnut Shellen_US
dc.subjectSilveren_US
dc.titlePrepared activated carbon from hazelnut shell where coated nanocomposite with Ag+ used for antibacterial and adsorption propertiesen_US
dc.typearticleen_US
dc.departmentSağlık Bilimleri Yüksekokulu, Beslenme ve Diyetetik Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorKaratas, Sukru
dc.authorwosidGAU-6380-2022en_US
dc.authorscopusid57197025434en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:000857690800011en_US
dc.identifier.scopus2-s2.0-85138579552en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster