Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaradayi-Ataş, Pinar
dc.contributor.authorSevkli, Aise Zulal
dc.contributor.authorTufan, Kadir
dc.date.accessioned2022-12-13T11:11:57Z
dc.date.available2022-12-13T11:11:57Z
dc.date.issued2021en_US
dc.identifier.citationZhou, X., Gao, D. Y., & Yang, C. (2016). Global solutions to a class of CEC benchmark constrained optimization problems. Optimization Letters, 10(3), 457-472.en_US
dc.identifier.issn1862-4472
dc.identifier.urihttps://doi.org/10.1007/s11590-021-01816-y
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3100
dc.description.abstractMild cognitive impairment (MCI) is an intermediate stage between age-related cognitive decline. Alzheimer's disease (AD) is a more serious decline in dementia. Early identification of mild cognitive impairment with a high risk of Alzheimer's disease is very important for increasing the success rate of the treatment. In this study, we present a Variable Neighborhood Search (VNS) based framework that uses Magnetic Resonance Imaging (MRI) data to diagnose early conversion from MCI to AD. The proposed framework has been built in three main phases: preparing dataset, feature selection, and classification. After preparing the dataset, a VNS algorithm selects the most predictive MRI features for classification. Then, a Linear Support Vector Machine is utilized to classify the selected features. All data in this study are obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with 860 subjects, eight different monthly periods, and 286 features in each period. The results obtained from the framework outperform those of previous research in terms of accuracy, sensitivity, and specificity values. The results of this study demonstrate that our framework has a huge potential for early prediction and detection of mild cognitive impairment to Alzheimer's disease conversion. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofOptimization Lettersen_US
dc.identifier.doi10.1007/s11590-021-01816-yen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADNIen_US
dc.subjectAlzheimer's Diseaseen_US
dc.subjectLinear-Support Vector Machineen_US
dc.subjectMild Cognitive Impairmenten_US
dc.subjectSymmetrical Uncertaintyen_US
dc.subjectVariable Neighborhood Searchen_US
dc.titleA VNS based framework for early diagnosis of the Alzheimer's disease converted from mild cognitive impairmenten_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0003-0924-1196en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorKaradayı-Ataş, Pinar
dc.authorwosidFCW-3628-2022en_US
dc.authorscopusid57206787354en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:000718721800001en_US
dc.identifier.scopus2-s2.0-85119054148en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster