Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKatirci, R.
dc.contributor.authorAktas, H.
dc.contributor.authorZontul, M.
dc.date.accessioned2022-12-15T10:53:41Z
dc.date.available2022-12-15T10:53:41Z
dc.date.issued2021en_US
dc.identifier.citationKatirci, R., Aktas, H., & Zontul, M. (2021). The prediction of the ZnNi thickness and Ni% of ZnNi alloy electroplating using a machine learning method. Transactions of the IMF, 99(3), 162-168.en_US
dc.identifier.issn0020-2967
dc.identifier.urihttps://doi.org/10.1080/00202967.2021.1898183
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3116
dc.description.abstractZnNi alloy coating is commonly used to enhance the corrosion resistance of steel. The percentage of Ni should be maintained between 12% and 14% in the coating for best corrosion performance. The response surface design (RSD), polynomial regression (PR), support vector regression (SVR), XGBoost regression (XGB), K-nearest neighbours regression and Gaussian process regression (GP) algorithms have been used to predict the ZnNi alloy coating thickness and Ni % amount in the coating. As statistical indices mean square error (MSE) and correlation coefficient (R 2) were used to compare the models. The results of the analysis show that the XGB algorithm gives the best estimation for both ZnNi thickness and Ni%. A high correlation was observed between the predicted values and experimental results. R 2 values of 0.87 and 0.81 were acquired for ZnNi thickness and Ni %, respectively, using the XGB algorithm. This study has proved that the machine learning algorithm is a promising method to predict the ZnNi coating thickness and Ni % in the alloy based on the composition of the ZnNi electroplating bath. © 2021 Institute of Materials Finishing Published by Taylor & Francis on behalf of the Institute.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofTransactions of the Institute of Metal Finishingen_US
dc.identifier.doi10.1080/00202967.2021.1898183en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDesign of Experimenten_US
dc.subjectMachine Learningen_US
dc.subjectOptimisation of Zinc–Nickel Electroplating Bathen_US
dc.subjectPrediction of Zinc–Nickel Thickness and Ni %en_US
dc.subjectXgboost Regressoren_US
dc.subjectZinc–Nickel Electroplatingen_US
dc.titleThe prediction of the ZnNi thickness and Ni % of ZnNi alloy electroplating using a machine learning methoden_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0002-7557-2981en_US
dc.identifier.volume99en_US
dc.identifier.issue3en_US
dc.identifier.startpage162en_US
dc.identifier.endpage168en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorZontul, Metin
dc.authorwosidEIV-4571-2022en_US
dc.authorscopusid55877463700en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:000630321000001en_US
dc.identifier.scopus2-s2.0-85102866494en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster