Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBulut, Faruk
dc.contributor.authorInce, Ibrahim Furkan
dc.date.accessioned2023-06-05T09:17:45Z
dc.date.available2023-06-05T09:17:45Z
dc.date.issued2023en_US
dc.identifier.citationBulut, F., & Ince, I. F. (2023). Iterative histogram equalization using discrete wavelet transform in low-dynamic range. Journal of Electronic Imaging, 32(2), 023034-023034.en_US
dc.identifier.issn1017-9909
dc.identifier.urihttps://doi.org/10.1117/1.JEI.32.2.023034
dc.identifier.urihttps://hdl.handle.net/20.500.12294/3888
dc.description.abstractA progressive histogram equalization (HE) and contrast enhancement method is proposed in the frequency domain. This method has an iterative structure based on the 6-sigma rule in the low-dynamic range using discrete wavelet transform. The proposed method determines an automatic threshold for attenuating the high-frequency amplitude of a signal in the discrete wavelet domain, based on the standard deviation of the absolute power of the high-frequency components in the signal band generated from the probability density function (PDF). Then an iterative quantization procedure is used where the PDF values in the frequency domain are randomly quantized. Besides, the maximum Bhattacharyya coefficient, which matches the original input image's PDF, is used as a cost function to optimize the histogram smoothing output. For the random number generation, a 32-bit pseudorandom generator is employed to produce the same result for the output image at each runtime. The quantization factor parameter enables a controlled contrast enhancement rate to receive balanced equalization results in images. In the experimental studies, the proposed iterative HE method is compared with the well-known global, local, and brightness preserving algorithms. Experimental studies quantitatively and qualitatively display promising and encouraging results in terms of various state-of-the-art quality assessment metrics such as mean squared error, peak signal-to-noise ratio, structural similarity index measurement, contrast improvement index, absolute mean brightness error, and quality-aware relative contrast measure. © 2023 SPIE and IS&T.en_US
dc.language.isoengen_US
dc.publisherSPIEen_US
dc.relation.ispartofJournal of Electronic Imagingen_US
dc.identifier.doi10.1117/1.JEI.32.2.023034en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject6-Sigma Ruleen_US
dc.subjectContrast Enhancementen_US
dc.subjectFrequency Domainen_US
dc.subjectHaar Wavelet Transformen_US
dc.titleIterative histogram equalization using discrete wavelet transform in low-dynamic rangeen_US
dc.typearticleen_US
dc.departmentMühendislik ve Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0003-2960-8725 View this author’s ORCID profileen_US
dc.identifier.volume32en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorBulut, Faruk
dc.authorscopusid56104935000en_US
dc.identifier.scopus2-s2.0-85159456488en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster