Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAlver Şahin, Ülküen_US
dc.contributor.authorBayat, Cumaen_US
dc.contributor.authorUçan, Osman Nurien_US
dc.date.accessioned2016-06-03T07:51:40Z
dc.date.available2016-06-03T07:51:40Z
dc.date.issued2011
dc.identifier.citationAlver Şahin, Ü., Bayat, C., Uçan, O.N. (2011). Application of cellular neural network (CNN) to the prediction of missing air pollutant data. Atmospheric Research. 101.2011, 314–326.en_US
dc.identifier.issn0169-8095
dc.identifier.urihttps://hdl.handle.net/20.500.12294/474
dc.identifier.urihttp://dx.doi.org/10.1016/j.atmosres.2011.03.005
dc.descriptionBayat, Cuma (Arel Author)en_US
dc.description.abstractFor air-quality assessments in most major urban centers, air pollutants are monitored using continuous samplers. Sometimes data are not collected due to equipment failure or during equipment calibration. In this paper, we predict daily air pollutant concentrations (PM(10) and SO(2)) from the Yenibosna and Umraniye air pollution measurement stations in Istanbul for times at which pollution data was not recorded. We predicted these pollutant concentrations using the CNN model with meteorological parameters, estimating missing daily pollutant concentrations for two data sets from 2002 to 2003. These data sets had 50 and 20% of data missing. The results of the CNN model predictions are compared with the results of a multi-variate linear regression (LR). Results show that the correlation between predicted and observed data was higher for all pollutants using the CNN model (0.54-0.87). The CNN model predicted SO(2) concentrations better than PM(10) concentrations. Another interesting result is that winter concentrations of all pollutants were predicted better than summer concentrations. Experiments showed that accurate predictions of missing air pollutant concentrations are possible using the new approach contained in the CNN model. We therefore proposed a new approach to model air-pollution monitoring problem using CNN. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofAtmospheric Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMissing Dataen_US
dc.subjectAir Qualityen_US
dc.subjectParticulate Matter (PM)en_US
dc.subjectSulfur Dioxide (SO2)en_US
dc.subjectMeteorologyen_US
dc.subjectCellular Neural Network (CNN)en_US
dc.titleApplication of cellular neural network (CNN) to the prediction of missing air pollutant dataen_US
dc.typearticleen_US
dc.departmentİstanbul Arel Üniversitesi, Mühendislik ve Mimarlık Fakültesi, Endüstri Mühendisliği Bölümü.en_US
dc.authoridTR176409en_US
dc.authoridTR45123en_US
dc.authoridTR26113en_US
dc.identifier.volume101en_US
dc.identifier.issue2011en_US
dc.identifier.startpage314en_US
dc.identifier.endpage326en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster